Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTiwari, Saurabhen_US
dc.contributor.authorAmin, Ruhulen_US
dc.contributor.authorSen, Somadityaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:14:46Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:14:46Z-
dc.date.issued2020-
dc.identifier.citationKhatun, N., Tiwari, S., Amin, R., Tseng, C. -., Biring, S., & Sen, S. (2020). Stable anatase phase with a bandgap in visible light region by a charge compensated Ga–V (1:1) co-doping in TiO2. Ceramics International, 46(7), 8958-8970. doi:10.1016/j.ceramint.2019.12.143en_US
dc.identifier.issn0272-8842-
dc.identifier.otherEID(2-s2.0-85077567965)-
dc.identifier.urihttps://doi.org/10.1016/j.ceramint.2019.12.143-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8025-
dc.description.abstractA series of charge compensated Ga–V co-doped TiO2 samples (Ti(1-x)(Ga0.5V0.5)xO2) have been synthesized by a modified sol-gel process. X-ray diffraction pattern shows that the anatase to rutile (A→R) onset temperature (TO) shifts to a higher temperature, whereas the complete phase transformation temperature (TC) shifts to a low-temperature region as compared to pure TiO2, due to Ga–V incorporation. Ga–V co-doping helps in the transformation of some smaller sized Ti4+ to a relatively larger Ti3+. In the anatase phase, oxygen content also increases with increasing doping concentration, which along with the larger size of Ti3+ results in lattice expansion and thereby delays the TO. In the rutile phase, oxygen vacancy increases with increasing doping concentration, which results in lattice contraction and accelerates phase transition. Grain growth process is hindered in the anatase phase (crystallites size reduces from ~15 nm (x = 0.00) to 8 nm (0.10)), whereas it is accelerated in the rutile phase as compared to pure TiO2. In both phases bandgap (Eg) reduces to the visible light region (anatase: Eg = 3.16 eV (x = 0.00) to 2.19 eV (x = 0.10) and rutile: 3.08 eV (x = 0.00) to 2.18 eV (x = 0.10)) in all co-doped samples. The tail of the absorption edge reveals lattice distortion and increase of Urbach energy proofs the same due to co-doping. All these changes (grain growth, phase transition, and optical properties) are due to lattice distortion created by the combined effect of substitution, interstitials, and oxygen vacancies due to Ga–V incorporation in TiO2. © 2019en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceCeramics Internationalen_US
dc.subjectCrystallitesen_US
dc.subjectEnergy gapen_US
dc.subjectGallium compoundsen_US
dc.subjectGrain growthen_US
dc.subjectOptical latticesen_US
dc.subjectOptical propertiesen_US
dc.subjectOxide mineralsen_US
dc.subjectOxygen vacanciesen_US
dc.subjectPhase transitionsen_US
dc.subjectPhotoelectron spectroscopyen_US
dc.subjectSemiconductor dopingen_US
dc.subjectSemiconductor materialsen_US
dc.subjectSol-gel processen_US
dc.subjectTemperatureen_US
dc.subjectTitanium dioxideen_US
dc.subjectDoping concentrationen_US
dc.subjectGrain growth processen_US
dc.subjectLattice contractionen_US
dc.subjectLattice distortionsen_US
dc.subjectLow temperature regionsen_US
dc.subjectModified sol-gel processen_US
dc.subjectPhase transformation temperatureen_US
dc.subjectVisible light regionen_US
dc.subjectVanadium compoundsen_US
dc.titleStable anatase phase with a bandgap in visible light region by a charge compensated Ga–V (1:1) co-doping in TiO2en_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: