Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8091
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakraborty, Sudipen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:15:02Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:15:02Z-
dc.date.issued2019-
dc.identifier.citationYang, J., Wang, Y., Lagos, M. J., Manichev, V., Fullon, R., Song, X., . . . Chhowalla, M. (2019). Single atomic vacancy catalysis. ACS Nano, 13(9), 9958-9964. doi:10.1021/acsnano.9b05226en_US
dc.identifier.issn1936-0851-
dc.identifier.otherEID(2-s2.0-85071653090)-
dc.identifier.urihttps://doi.org/10.1021/acsnano.9b05226-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8091-
dc.description.abstractSingle atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm-2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s-1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity. © 2019 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Nanoen_US
dc.subjectAtomsen_US
dc.subjectElectrocatalysisen_US
dc.subjectHydrogen evolution reactionen_US
dc.subjectLayered semiconductorsen_US
dc.subjectMolybdenum compoundsen_US
dc.subjectMolybdenum metallographyen_US
dc.subjectSulfur compoundsen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectElectrical conductivityen_US
dc.subjectElectrochemical environmentsen_US
dc.subjectHelium ion microscopesen_US
dc.subjectMolybdenum disulfideen_US
dc.subjectNumber of active sitesen_US
dc.subjectScanning transmission electron microscopesen_US
dc.subjectSemiconductor-to-metal transitionsen_US
dc.subjectSingle vacanciesen_US
dc.subjectCatalyst activityen_US
dc.titleSingle Atomic Vacancy Catalysisen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: