Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8111
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoni, Kavitaen_US
dc.contributor.authorSaseendra, Harisankaren_US
dc.contributor.authorMavani, Krushna R.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:15:08Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:15:08Z-
dc.date.issued2019-
dc.identifier.citationSoni, K., Harisankar, S., Prajapat, M., & Mavani, K. R. (2019). Structural stability and electronic transitions of NdNi0.98Zn0.02O3−δ thin films. Applied Physics A: Materials Science and Processing, 125(8) doi:10.1007/s00339-019-2841-0en_US
dc.identifier.issn0947-8396-
dc.identifier.otherEID(2-s2.0-85069690814)-
dc.identifier.urihttps://doi.org/10.1007/s00339-019-2841-0-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8111-
dc.description.abstractNdNiO3 is a multiband system and shows temperature-driven first-order metal to insulator phase transition. Divalent Zn doping at trivalent Ni-site in NdNiO3 injects holes in the system. To study the effects of oxygen variation in a combination of Zn doping, NdNi1−xZnxO3−δ (x = 0, 0.02) thin films (30 nm) have been deposited on single-crystal LaAlO3 (001) substrate. The broadening of temperature-driven metal–insulator transition reduces drastically just by 2% Zn-doping at Ni-site. Further, the variation in oxygen content in NdNi0.98Zn0.02O3−δ films modifies the structural and electronic properties quite systematically and significantly. The Raman modes related to Ni–O bonds get blue-shifted due to the increase in oxygen content of thin films. A comparative study of the films with and without doping clearly shows that Zn-doping provides stability to the structure for the single-phase formation despite oxygen deficiency. The oxygen-deficient insulating films show activation behaviour at high temperatures, indicating an opening of charge-transfer gap. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceApplied Physics A: Materials Science and Processingen_US
dc.subjectAluminum compoundsen_US
dc.subjectBlue shiften_US
dc.subjectCharge transferen_US
dc.subjectElectronic propertiesen_US
dc.subjectLanthanum compoundsen_US
dc.subjectMetal insulator transitionen_US
dc.subjectNeodymium compoundsen_US
dc.subjectNickel compoundsen_US
dc.subjectOxygenen_US
dc.subjectSemiconductor dopingen_US
dc.subjectSingle crystalsen_US
dc.subjectStabilityen_US
dc.subjectZincen_US
dc.subjectCharge-transfer gapen_US
dc.subjectComparative studiesen_US
dc.subjectElectronic transitionen_US
dc.subjectMetal-to-Insulator phase transitionen_US
dc.subjectMultiband systemsen_US
dc.subjectOxygen deficiencyen_US
dc.subjectStructural and electronic propertiesen_US
dc.subjectStructural stabilitiesen_US
dc.subjectThin filmsen_US
dc.titleStructural stability and electronic transitions of NdNi0.98Zn0.02O3−δ thin filmsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: