Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8208
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPakhira, Srimantaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:15:34Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:15:34Z-
dc.date.issued2018-
dc.identifier.citationHui, J., Schorr, N. B., Pakhira, S., Qu, Z., Mendoza-Cortes, J. L., & Rodríguez-López, J. (2018). Achieving fast and efficient K+ intercalation on ultrathin graphene electrodes modified by a li+ based solid-electrolyte interphase. Journal of the American Chemical Society, 140(42), 13599-13603. doi:10.1021/jacs.8b08907en_US
dc.identifier.issn0002-7863-
dc.identifier.otherEID(2-s2.0-85055190121)-
dc.identifier.urihttps://doi.org/10.1021/jacs.8b08907-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8208-
dc.description.abstractAdvancing beyond Li-ion batteries requires translating the beneficial characteristics of Li+ electrodes to attractive, yet incipient, candidates such as those based on K+ intercalation. Here, we use ultrathin few-layer graphene (FLG) electrodes as a model interface to show a dramatic enhancement of K+ intercalation performance through a simple conditioning of the solid-electrolyte interphase (SEI) in a Li+ containing electrolyte. Unlike the substantial plating occurring in K+ containing electrolytes, we found that a Li+ based SEI enabled efficient K+ intercalation with discrete staging-type phase transitions observed via cyclic voltammetry at scan rates up to 100 mVs-1 and confirmed as ion-intercalation processes through in situ Raman spectroscopy. The resulting interface yielded fast charge-discharge rates up to ∼360C (1C is fully discharge in 1 h) and remarkable long-term cycling stability at 10C for 1000 cycles. This SEI promoted the transport of K+ as verified via mass spectrometric depth profiling. This work introduces a convenient strategy for improving the performance of ion intercalation electrodes toward a practical K-ion battery and FLG electrodes as a powerful analytical platform for evaluating fundamental aspects of ion intercalation. Copyright © 2018 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceJournal of the American Chemical Societyen_US
dc.subjectCharging (batteries)en_US
dc.subjectCyclic voltammetryen_US
dc.subjectDepth profilingen_US
dc.subjectElectric dischargesen_US
dc.subjectGrapheneen_US
dc.subjectGraphite electrodesen_US
dc.subjectIonsen_US
dc.subjectLithium-ion batteriesen_US
dc.subjectMass spectrometryen_US
dc.subjectSeebeck effecten_US
dc.subjectCycling stabilityen_US
dc.subjectFew-layer grapheneen_US
dc.subjectGraphene electrodesen_US
dc.subjectIn-situ Raman spectroscopyen_US
dc.subjectIon batteriesen_US
dc.subjectIon intercalationen_US
dc.subjectModel interfaceen_US
dc.subjectSolid electrolyte interphaseen_US
dc.subjectSolid electrolytesen_US
dc.subjectelectrolyteen_US
dc.subjectgraphene oxideen_US
dc.subjectlithium ionen_US
dc.subjectpotassium ionen_US
dc.subjectArticleen_US
dc.subjectcyclic potentiometryen_US
dc.subjectintercalation complexen_US
dc.subjectmass spectrometryen_US
dc.subjectphase transitionen_US
dc.subjectRaman spectrometryen_US
dc.subjectthermostabilityen_US
dc.subjecttime of flight mass spectrometryen_US
dc.titleAchieving Fast and Efficient K+ Intercalation on Ultrathin Graphene Electrodes Modified by a Li+ Based Solid-Electrolyte Interphaseen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: