Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8245
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTiwari, Saurabhen_US
dc.contributor.authorSen, Somadityaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:15:46Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:15:46Z-
dc.date.issued2018-
dc.identifier.citationKhatun, N., Tiwari, S., Vinod, C. P., Tseng, C. -., Wei Liu, S., Biring, S., & Sen, S. (2018). Role of oxygen vacancies and interstitials on structural phase transition, grain growth, and optical properties of ga doped TiO2. Journal of Applied Physics, 123(24) doi:10.1063/1.5027672en_US
dc.identifier.issn0021-8979-
dc.identifier.otherEID(2-s2.0-85049260781)-
dc.identifier.urihttps://doi.org/10.1063/1.5027672-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8245-
dc.description.abstractA systematic study on the effect of gallium (Ga) doping (0 ≤ x ≤ 0.10) on the structural phase transition and grain growth of TiO2 is reported here. X-ray diffraction spectroscopy and Raman spectroscopy confirm that Ga doping inhibits the phase transition. Activation energy increases from 125 kJ/mol (x = 0.00) to 300 kJ/mol (x = 0.10) upon Ga incorporation. X-ray photoelectron spectroscopy shows the presence of Ti3+/Ga3+ interstitials, substitution (Ti4+ by Ga3+), and oxygen vacancies in the samples. At lower doping (x ≤ 0.05), interstitials play a more significant role over substitution and oxygen vacancies, thereby resulting in a considerable lattice expansion. At higher doping (x ≥ 0.05), the effect of interstitials is compensated by both the effect of substitution and oxygen vacancies, thereby resulting in relatively lesser lattice expansion. Inhibition of the phase transition is the result of this lattice expansion. The crystallite size (anatase) and particle size (rutile) both are reduced due to Ga incorporation. It also modifies optical properties of pure TiO2 by increasing the bandgap (from 3.06 to 3.09 eV) and decreasing the Urbach energy (from 58.59 to 47.25 meV). This happens due to regularization of the lattice by the combined effect of substitution/interstitials and oxygen vacancies. © 2018 Author(s).en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.sourceJournal of Applied Physicsen_US
dc.subjectActivation energyen_US
dc.subjectCrystallite sizeen_US
dc.subjectExpansionen_US
dc.subjectGalliumen_US
dc.subjectGrain growthen_US
dc.subjectOptical propertiesen_US
dc.subjectOxide mineralsen_US
dc.subjectParticle sizeen_US
dc.subjectTitanium dioxideen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectCombined effecten_US
dc.subjectEffect of substitutionen_US
dc.subjectInterstitialsen_US
dc.subjectLattice expansionen_US
dc.subjectStructural phase transitionen_US
dc.subjectSystematic studyen_US
dc.subjectUrbach energyen_US
dc.subjectX-ray diffraction spectroscopyen_US
dc.subjectOxygen vacanciesen_US
dc.titleRole of oxygen vacancies and interstitials on structural phase transition, grain growth, and optical properties of Ga doped TiO2en_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: