Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8271
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSagdeo, Pankaj R.en_US
dc.contributor.authorKumar, Rajeshen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:15:56Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:15:56Z-
dc.date.issued2018-
dc.identifier.citationMishra, S., Yogi, P., Sagdeo, P. R., & Kumar, R. (2018). TiO2-Co3O4 core-shell nanorods: Bifunctional role in better energy storage and electrochromism. ACS Applied Energy Materials, 1(2), 790-798. doi:10.1021/acsaem.7b00254en_US
dc.identifier.issn2574-0962-
dc.identifier.otherEID(2-s2.0-85058147120)-
dc.identifier.urihttps://doi.org/10.1021/acsaem.7b00254-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8271-
dc.description.abstractA suitably designed heterostructured TiO2-Co3O4 core-shell nanorod array has been found to exhibit improved supercapacitive as well as electrochromic properties as compared to the nanowires of either of the oxides when used individually. The core-shell nanostructures have been grown on an FTO coated glass substrate by preparing TiO2 nanorods through hydrothermal reaction followed by growing a Co3O4 shell layer by electrodeposition. The core-shell electrode shows high specific and areal capacitance of ∼342 F/g and ∼140 mF/cm2 (at scan rate of 100 mV/s), respectively. Such an improvement in supercapacitive behavior, as compared to the behavior of the existing ones, is likely due to increased surface area and modified charge dynamics within the core-shell heterojunction. Additionally, these core-shells also exhibit stable and power efficient bias induced color change between transparent (sky blue) and opaque (dark brown) states with coloration efficiency of ∼91 cm2/C. Porous morphology and strong adhesion to the surface of transparent conducting glass electrode give rise to superior cyclic stability in both energy storage and electrochromic applications, which make these core-shell structures suitable candidates for future electronic devices. © 2018 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Energy Materialsen_US
dc.subjectCobalt compoundsen_US
dc.subjectElectrochromismen_US
dc.subjectElectrodepositionen_US
dc.subjectEnergy storageen_US
dc.subjectGlassen_US
dc.subjectHeterojunctionsen_US
dc.subjectMorphologyen_US
dc.subjectNanorodsen_US
dc.subjectSubstratesen_US
dc.subjectTitanium dioxideen_US
dc.subjectTransparent electrodesen_US
dc.subjectCore shellen_US
dc.subjectCore shell nano structuresen_US
dc.subjectCore-shell heterojunctionsen_US
dc.subjectElectro-chromic applicationsen_US
dc.subjectElectrochromic propertiesen_US
dc.subjecthydrothermalen_US
dc.subjectSupercapacitive behavioren_US
dc.subjectTransparent conducting glassen_US
dc.subjectShells (structures)en_US
dc.titleTiO2-Co3O4 Core-Shell Nanorods: Bifunctional Role in Better Energy Storage and Electrochromismen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: