Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Y. B.Kishoreen_US
dc.contributor.authorSen, Somadityaen_US
dc.contributor.authorShirage, Parasharam Marutien_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:17:17Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:17:17Z-
dc.date.issued2015-
dc.identifier.citationDas, R., Kumar, A., Kumar, Y., Sen, S., & Shirage, P. M. (2015). Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Advances, 5(74), 60365-60372. doi:10.1039/c5ra07135fen_US
dc.identifier.issn2046-2069-
dc.identifier.otherEID(2-s2.0-84937126990)-
dc.identifier.urihttps://doi.org/10.1039/c5ra07135f-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8503-
dc.description.abstractHere we report an easy and rapid synthesis technique of wurtzite ZnO nanostructures in the form of flowers, nano-rods and nano-tubes that are achieved by a facile hydrothermal method. A growth mechanism is proposed based on a series of temperature dependent experiments keeping other parameters during the synthesis in the aqueous medium at optimized levels. Pure ZnO results in nano-rods while Sr doped ZnO material forms flower and tube like structures. The XRD and TEM investigations show that ZnO nanostructures possess good crystalline structures with a growth direction along the c-axis of the crystal plane. Raman spectra confirm five phonon vibration modes for ZnO nanostructures at 99, 333, 382, 438 and 582 cm-1 and one more defect induced low intensity peak at 663 cm-1 for Sr doped ZnO. Ultraviolet-visible (UV-vis) spectroscopy shows the band gap energy of ZnO nanostructures decreases from 3.24 to 3.22 eV with the substitution of Sr into the ZnO lattice. Photoluminescence spectra reveal the existence of several defect states in all of the samples. Defect intensity seems negligibly affected by the variation of growth temperature, whereas, Sr doping plays a major role in controlling oxygen and Zn related defects. I-V characteristics of the ZnO and Sr doped ZnO show rectification behaviour of the Schottky diodes. © The Royal Society of Chemistry 2015.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceRSC Advancesen_US
dc.subjectDefectsen_US
dc.subjectEnergy gapen_US
dc.subjectGrowth temperatureen_US
dc.subjectHydrothermal synthesisen_US
dc.subjectNanorodsen_US
dc.subjectNanostructuresen_US
dc.subjectOptical propertiesen_US
dc.subjectPhotoluminescenceen_US
dc.subjectSchottky barrier diodesen_US
dc.subjectZinc sulfideen_US
dc.subjectCrystalline structureen_US
dc.subjectDefect intensitiesen_US
dc.subjectHydrothermal methodsen_US
dc.subjectIV characteristicsen_US
dc.subjectPhonon vibration modeen_US
dc.subjectPhotoluminescence spectrumen_US
dc.subjectTemperature dependenten_US
dc.subjectZnO nanostructuresen_US
dc.subjectZinc oxideen_US
dc.titleEffect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal methoden_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: