Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJalan, Sarikaen_US
dc.contributor.authorDwivedi, Sanjiv Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:17:29Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:17:29Z-
dc.date.issued2014-
dc.identifier.citationJalan, S., & Dwivedi, S. K. (2014). Extreme-value statistics of brain networks: Importance of balanced condition. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 89(6) doi:10.1103/PhysRevE.89.062718en_US
dc.identifier.issn1539-3755-
dc.identifier.otherEID(2-s2.0-84903638034)-
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.89.062718-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8534-
dc.description.abstractDespite the key role played by inhibitory-excitatory couplings in the functioning of brain networks, the impact of a balanced condition on the stability properties of underlying networks remains largely unknown. We investigate properties of the largest eigenvalues of networks having such couplings, and find that they follow completely different statistics when in the balanced situation. Based on numerical simulations, we demonstrate that the transition from Weibull to Fréchet via the Gumbel distribution can be controlled by the variance of the column sum of the adjacency matrix, which depends monotonically on the denseness of the underlying network. As a balanced condition is imposed, the largest real part of the eigenvalue emulates a transition to the generalized extreme-value statistics, independent of the inhibitory connection probability. Furthermore, the transition to the Weibull statistics and the small-world transition occur at the same rewiring probability, reflecting a more stable system. © 2014 American Physical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.sourcePhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsen_US
dc.subjectCouplingsen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectStabilityen_US
dc.subjectAdjacency matricesen_US
dc.subjectConnection probabilityen_US
dc.subjectExtreme-value statisticsen_US
dc.subjectGumbel distributionen_US
dc.subjectLargest eigenvaluesen_US
dc.subjectRewiring probabilityen_US
dc.subjectStability propertiesen_US
dc.subjectUnderlying networksen_US
dc.subjectWeibull distributionen_US
dc.subjectanimalen_US
dc.subjectbiological modelen_US
dc.subjectbrainen_US
dc.subjectcomputer simulationen_US
dc.subjecthumanen_US
dc.subjectnerve cell inhibitionen_US
dc.subjectnerve cell networken_US
dc.subjectphysiologyen_US
dc.subjectstatistical modelen_US
dc.subjectsynaptic transmissionen_US
dc.subjectAnimalsen_US
dc.subjectBrainen_US
dc.subjectComputer Simulationen_US
dc.subjectHumansen_US
dc.subjectModels, Neurologicalen_US
dc.subjectModels, Statisticalen_US
dc.subjectNerve Neten_US
dc.subjectNeural Inhibitionen_US
dc.subjectSynaptic Transmissionen_US
dc.titleExtreme-value statistics of brain networks: Importance of balanced conditionen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: