Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajak, Richaen_US
dc.contributor.authorSaraf, Mohiten_US
dc.contributor.authorKumar, Praveen Naveenen_US
dc.contributor.authorNatarajan, Kaushiken_US
dc.contributor.authorMobin, Shaikh M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:29:27Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:29:27Z-
dc.date.issued2021-
dc.identifier.citationRajak, R., Saraf, M., Kumar, P., Natarajan, K., & Mobin, S. M. (2021). Construction of a cu-based metal-organic framework by employing a mixed-ligand strategy and its facile conversion into nanofibrous CuO for electrochemical energy storage applications. Inorganic Chemistry, 60(22), 16986-16995. doi:10.1021/acs.inorgchem.1c02062en_US
dc.identifier.issn0020-1669-
dc.identifier.otherEID(2-s2.0-85118776099)-
dc.identifier.urihttps://doi.org/10.1021/acs.inorgchem.1c02062-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8665-
dc.description.abstractRecently, metal-organic frameworks (MOFs) have been widely employed as a sacrificial template for the construction of nanostructured materials for a range of applications including energy storage. Herein, we report a facile mixed-ligand strategy for the synthesis of a Cu-MOF, [Cu3(Azopy)3(BTTC)3(H2O)3·2H2O]n (where BTTC = 1,2,4,5-benzenetetracarboxylic acid and Azopy = 4,4′-Azopyridine), via a slow-diffusion method at room temperature. X-ray analysis authenticates the two-dimensional (2D)-layered framework of Cu-MOF. Topologically, this 2D-layered structure is assigned as a 4-connected unimodal net with sql topology. Further, nanostructured CuO is obtained via a simple precipitation method by employing Cu-MOF as a precursor. After analysis of their physicochemical properties through various techniques, both materials are used as surface modifiers of glassy carbon electrodes for a comparative electrochemical study. The results reveal a superior charge storage performance of CuO (244.2 F g-1 at a current density of 0.8 A g-1) with a high rate capability compared to Cu-MOF. This observation paves the pathway for the strategic design of high-performing supercapacitor electrode materials. © 2021 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceInorganic Chemistryen_US
dc.subjectChelationen_US
dc.subjectCopper oxidesen_US
dc.subjectEnergy dispersive X ray analysisen_US
dc.subjectEnergy storageen_US
dc.subjectLigandsen_US
dc.subjectMolar ratioen_US
dc.subjectOrganic polymersen_US
dc.subjectOrganometallicsen_US
dc.subjectPhysicochemical propertiesen_US
dc.subjectPrecipitation (chemical)en_US
dc.subjectRedox reactionsen_US
dc.subjectStorage (materials)en_US
dc.subjectTopologyen_US
dc.subjectX ray diffraction analysisen_US
dc.subjectAzopyridineen_US
dc.subjectCu-baseden_US
dc.subjectElectrochemical energy storageen_US
dc.subjectEnergy storage applicationsen_US
dc.subjectFacile conversionen_US
dc.subjectMetalorganic frameworks (MOFs)en_US
dc.subjectMixed-ligandsen_US
dc.subjectNano-fibrousen_US
dc.subjectSacrificial templatesen_US
dc.subjectSlow diffusionen_US
dc.subjectMetal-Organic Frameworksen_US
dc.titleConstruction of a Cu-Based Metal-Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nanofibrous CuO for Electrochemical Energy Storage Applicationsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: