Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8724
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumawat, Rameshwar L.en_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:29:36Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:29:36Z-
dc.date.issued2021-
dc.identifier.citationKumawat, R. L., & Pathak, B. (2021). Identifying DNA nucleotides via transverse electronic transport in atomically thin topologically defected graphene electrodes. ACS Applied Bio Materials, 4(2), 1403-1412. doi:10.1021/acsabm.0c01309en_US
dc.identifier.issn2576-6422-
dc.identifier.otherEID(2-s2.0-85100215231)-
dc.identifier.urihttps://doi.org/10.1021/acsabm.0c01309-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8724-
dc.description.abstractExtended line defects in graphene (ELDG) sheets have been found to be promising for biomolecule sensing applications. By means of the consistent-exchange van der Waals density-functional (vdW-DF-cx) method, the electronic, structural, and quantum transport properties of the ELDG nanogap setup has been studied when a DNA nucleotide molecule is positioned inside the nanogap electrodes. The interaction energy (Ei) values indicate charge transfer interaction between the nucleotide molecule and electrode edges. The charge density difference plots reveal that charge fluctuates around the ELDG nanogap edges adjacent to the nucleotides. This charge redistribution grounds the modulation of electronic charge transport in the ELDG nanogap device. Further, we study the electronic transverse-conductance and tunnelling current-voltage (I-V) characteristics across two closely spaced ELDG nanogap electrodes using the density functional theory and the nonequilibrium Green's function methods when a DNA nucleotide is translocated through the nanogap. Our outcomes indicate that the ELDG nano gap device could allow sequencing of DNA nucleotides with a robust and consistent yield, giving the tunneling electric current signals that vary by more than 1 order of magnitude electric current (I) for the different DNA nucleotides. So, we predict that the ELDG nanogap-based tunneling device can be suitable for sequencing DNA nucleobases. ©en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Bio Materialsen_US
dc.subjectCharge transferen_US
dc.subjectDefectsen_US
dc.subjectDensity functional theoryen_US
dc.subjectDNAen_US
dc.subjectGene encodingen_US
dc.subjectGraphite electrodesen_US
dc.subjectNanostructuresen_US
dc.subjectNucleotidesen_US
dc.subjectQuantum chemistryen_US
dc.subjectVan der Waals forcesen_US
dc.subjectBiomolecule sensingen_US
dc.subjectCharge density differenceen_US
dc.subjectCharge redistributionen_US
dc.subjectCharge transfer interactionen_US
dc.subjectElectronic transporten_US
dc.subjectInteraction energiesen_US
dc.subjectNon equilibrium green's function methoden_US
dc.subjectQuantum transport propertiesen_US
dc.subjectGrapheneen_US
dc.titleIdentifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: