Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumawat, Rameshwar L.en_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:29:44Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:29:44Z-
dc.date.issued2020-
dc.identifier.citationKumawat, R. L., & Pathak, B. (2020). Prospects of black phosphorus nanoribbon for explosive sensing: A computational approach. Applied Surface Science, 529 doi:10.1016/j.apsusc.2020.147094en_US
dc.identifier.issn0169-4332-
dc.identifier.otherEID(2-s2.0-85087670477)-
dc.identifier.urihttps://doi.org/10.1016/j.apsusc.2020.147094-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8767-
dc.description.abstractWe have explored the possibility of using a low-dimensional black phosphorus-based nanoscale device for the detection of nitroaromatic-based explosives. In this work, we have investigated the structural, electronic, adsorption, and quantum transport properties of phosphorene nanoribbon (APNR) in the presence of different nitroaromatic compounds (NACs) using the state-of-the-art first-principle density functional theory (DFT) calculations. Our results reveal that the explosive molecules are interacting with the APNR surface, which neither affects the structure of the explosive molecule nor the APNR surface. However, it changes the electronic energy-gap due to the charge transfer between the APNR and explosive molecule. Furthermore, we have examined the transmission function and the current-voltage (I-V) characteristic curves for the APNR + explosive systems with the APNR device as a reference employing the non-equilibrium Green's function (NEGFs) combined with DFT approach. The different current-voltage characteristics (compared to pristine APNR device) of the system in the presence of explosive molecules indicate that such APNR based device can be very much sensitive and selective towards certain explosive molecules. Hence, our study demonstrates that APNR material may be an attractive nanodevice for the detection of explosives. © 2020 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceApplied Surface Scienceen_US
dc.subjectAromatic compoundsen_US
dc.subjectBlack Phosphorusen_US
dc.subjectCharge transferen_US
dc.subjectComputation theoryen_US
dc.subjectCurrent voltage characteristicsen_US
dc.subjectDensity functional theoryen_US
dc.subjectExplosivesen_US
dc.subjectMoleculesen_US
dc.subjectNanoribbonsen_US
dc.subjectPhosphorusen_US
dc.subjectQuantum chemistryen_US
dc.subjectQuantum theoryen_US
dc.subjectComputational approachen_US
dc.subjectDetection of explosivesen_US
dc.subjectElectronic energiesen_US
dc.subjectFirst-principle density-functional theoriesen_US
dc.subjectNitroaromatic compounden_US
dc.subjectNon-equilibrium Green's functionen_US
dc.subjectQuantum transport propertiesen_US
dc.subjectTransmission functionen_US
dc.subjectExplosives detectionen_US
dc.titleProspects of black phosphorus nanoribbon for explosive sensing: A computational approachen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: