Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanigrahi, Abhiramen_US
dc.contributor.authorAre, Venkata Narayanaen_US
dc.contributor.authorJain, Siddarthen_US
dc.contributor.authorNayak, Debasisen_US
dc.contributor.authorSarma, Tridib Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:29:58Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:29:58Z-
dc.date.issued2020-
dc.identifier.citationPanigrahi, A., Are, V. N., Jain, S., Nayak, D., Giri, S., & Sarma, T. K. (2020). Cationic organic nanoaggregates as AIE luminogens for wash-free imaging of bacteria and broad-spectrum antimicrobial application. ACS Applied Materials and Interfaces, 12(5), 5389-5402. doi:10.1021/acsami.9b15629en_US
dc.identifier.issn1944-8244-
dc.identifier.otherEID(2-s2.0-85078879156)-
dc.identifier.urihttps://doi.org/10.1021/acsami.9b15629-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8836-
dc.description.abstractThe increase in the use of bactericides is a matter of grave concern and a serious threat to human health. The present situation demands rapid and efficient detection and elimination of antibiotic-resistant microbes. Herein, we report the synthesis of a simple C3-symmetric molecular system (TGP) with an intrinsic positive charge through a single-step Schiff base condensation. In a water-dimethyl sulfoxide (DMSO) solvent mixture (80:20 v/v), TGP molecules self-aggregate to form spherical nanoparticles with a positively charged surface that displays efficient fluorescence owing to the aggregation-induced emission (AIE) phenomenon. Both Gram-positive and Gram-negative bacteria could be effectively detected through "turn-off" fluorescence spectroscopy as the electrostatic interaction of the resultant nanoaggregates with the negatively charged bacterial surface induced quenching of fluorescence of the nanoparticles. The fluorescence analysis and steady-state lifetime studies of TGP nanoparticles suggest that a nonradiative decay through photoinduced electron transfer from the nanoparticles to the bacterial surface leads to effective fluorescence quenching. Further, the TGP nanoaggregates demonstrate potent antimicrobial activity against microbes such as multidrug-resistant bacteria and fungi at a concentration as low as 74 μg/mL. A combination of factors including ionic surface characteristics of the nanoparticles for strong electrostatic binding on the bacterial surface followed by possible photoinduced electron transfer from the nanoaggregates to the bacterial membrane and enhanced oxidative stress in the membrane resulting from reactive oxygen species (ROS) generation is found accountable for the high antimicrobial activity of the TGP nanoparticles. The effective disruption of membrane integrity in both Gram-positive and Gram-negative bacteria upon interaction with the nanoaggregates can be observed from field emission scanning electron microscopy (FESEM) studies. The development of simple pathways for the molecular design of multifunctional broad-spectrum antimicrobial systems for rapid and real-time detection, wash-free imaging, and eradication of drug-resistant microbes might be crucial to combat pathogenic agents. Copyright © 2020 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Materials and Interfacesen_US
dc.subjectAgglomerationen_US
dc.subjectAntimicrobial agentsen_US
dc.subjectCoulomb interactionsen_US
dc.subjectDimethyl sulfoxideen_US
dc.subjectDrug deliveryen_US
dc.subjectElectron transitionsen_US
dc.subjectElectrostaticsen_US
dc.subjectField emission microscopesen_US
dc.subjectFluorescenceen_US
dc.subjectFluorescence quenchingen_US
dc.subjectFluorescence spectroscopyen_US
dc.subjectHealth risksen_US
dc.subjectNanoparticlesen_US
dc.subjectOrganic solventsen_US
dc.subjectQuenchingen_US
dc.subjectReal time systemsen_US
dc.subjectScanning electron microscopyen_US
dc.subjectAggregation-induced emissionsen_US
dc.subjectantimicrobialen_US
dc.subjectElectron transferen_US
dc.subjectNanoaggregatesen_US
dc.subjectReactive oxygen speciesen_US
dc.subjectBacteriaen_US
dc.subjectantiinfective agenten_US
dc.subjectcationen_US
dc.subjectdimethyl sulfoxideen_US
dc.subjectguanidineen_US
dc.subjectnanoparticleen_US
dc.subjectreactive oxygen metaboliteen_US
dc.subjectSchiff baseen_US
dc.subjectwateren_US
dc.subjectchemistryen_US
dc.subjectconfocal microscopyen_US
dc.subjectdrug effecten_US
dc.subjectGram negative bacteriumen_US
dc.subjectGram positive bacteriumen_US
dc.subjectmetabolismen_US
dc.subjectmicrobial sensitivity testen_US
dc.subjectquantum theoryen_US
dc.subjectscanning electron microscopyen_US
dc.subjectstatic electricityen_US
dc.subjectAnti-Infective Agentsen_US
dc.subjectCationsen_US
dc.subjectDimethyl Sulfoxideen_US
dc.subjectGram-Negative Bacteriaen_US
dc.subjectGram-Positive Bacteriaen_US
dc.subjectGuanidineen_US
dc.subjectMicrobial Sensitivity Testsen_US
dc.subjectMicroscopy, Confocalen_US
dc.subjectMicroscopy, Electron, Scanningen_US
dc.subjectNanoparticlesen_US
dc.subjectQuantum Theoryen_US
dc.subjectReactive Oxygen Speciesen_US
dc.subjectSchiff Basesen_US
dc.subjectStatic Electricityen_US
dc.subjectWateren_US
dc.titleCationic Organic Nanoaggregates as AIE Luminogens for Wash-Free Imaging of Bacteria and Broad-Spectrum Antimicrobial Applicationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: