Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8845
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumawat, Rameshwar L.en_US
dc.contributor.authorJena, Milan Kumaren_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:00Z-
dc.date.issued2020-
dc.identifier.citationKumawat, R. L., Jena, M. K., & Pathak, B. (2020). Individual identification of amino acids on an atomically thin hydrogen boride system using electronic transport calculations. Journal of Physical Chemistry C, doi:10.1021/acs.jpcc.0c08545en_US
dc.identifier.issn1932-7447-
dc.identifier.otherEID(2-s2.0-85097747082)-
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.0c08545-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8845-
dc.description.abstractRecently synthesized two-dimensional hydrogen boride (HB) with a hexagonal boron network offers excellent opportunities for nanoscale electronic device applications. Herein, we have proposed a type of field-effect transistor (FET) nanodevice based on a two-dimensional HB sheet for individual identification of amino acids. Using first-principles consistent-exchange van der Waals density-functional (vdW-DF-cx) calculations, we have studied the effects produced by the adsorption of each amino acid on the electronic properties of the HB-based nanodevice for its detection. The adsorption energies, adsorption heights, and the charge transfer of each amino acid can be deliberated as demonstrative of all 10 amino acids: alanine (Ala), arginine (Arg), aspartic (Asp), glutamic acid (Glu), glycine (Gly), histidine (His), lysine (Lys), phenylalanine (Phe), proline (Pro), and tyrosine (Tyr). Furthermore, the electronic transport properties of the HB nanodevice and HB + amino acid setup are studied by the nonequilibrium Green's function (NEGF) formalism combined with the density functional theory (DFT) approach. Our results show that the adsorption of each amino acid on the HB nanodevice gives Fano resonance in the electronic transmission function. The sensitivity analysis and current-voltage (I-V) characteristic results indicate that selective detection of amino acids is possible. Thus, we believe that the HB-based device may be promising for the prospect of protein sequencing. © 2020 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceJournal of Physical Chemistry Cen_US
dc.subjectAdsorptionen_US
dc.subjectBoridesen_US
dc.subjectCalculationsen_US
dc.subjectCharge transferen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectronic propertiesen_US
dc.subjectField effect transistorsen_US
dc.subjectHydrogenen_US
dc.subjectNanostructured materialsen_US
dc.subjectResonanceen_US
dc.subjectSensitivity analysisen_US
dc.subjectVan der Waals forcesen_US
dc.subjectAdsorption energiesen_US
dc.subjectDensity functionalsen_US
dc.subjectElectronic transmissionsen_US
dc.subjectElectronic transporten_US
dc.subjectElectronic transport propertiesen_US
dc.subjectIndividual identificationen_US
dc.subjectNanoscale electronic devicesen_US
dc.subjectNon-equilibrium Green's functionen_US
dc.subjectAmino acidsen_US
dc.titleIndividual Identification of Amino Acids on an Atomically Thin Hydrogen Boride System Using Electronic Transport Calculationsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: