Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Sourabhen_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:02Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:02Z-
dc.date.issued2019-
dc.identifier.citationDe, S. K., Mondal, S., Roy, A., Kumar, S., Mukherjee, M., Das Chakraborty, S., . . . Senapati, D. (2019). Zone-specific crystallization and a porosity-directed scaling marker for the catalytic efficacy of au-ag alloy nanoparticles. ACS Applied Nano Materials, 2(12), 7669-7685. doi:10.1021/acsanm.9b01748en_US
dc.identifier.issn2574-0970-
dc.identifier.otherEID(2-s2.0-85075683648)-
dc.identifier.urihttps://doi.org/10.1021/acsanm.9b01748-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8854-
dc.description.abstractBimetallic Au-Ag hollow nanoprisms (HNPrs) with variable effective surface areas, dynamic atomic compositions (Au:Ag), and distinct stepped surfaces between the central porous region and crystalline periphery are synthesized through a modified seed-mediated growth followed by a sacrificial galvanic replacement method. Porous central-cavity-induced distortion from prism to disk shape generates an increased number of numerous low-coordinated crystal defects on the crystalline nanodisk surface along with extended d-orbital spacing of the respective crystal disorders in the central-cavity region of HNPrs to control their adsorption efficiency for different redox reactions. Among the different HNPrs, HNPr250 possesses the highest density of the grain boundary with a preferable Au:Ag ratio to form an extensive porous ligamentous central cavity, acts as a superior electrocatalyst to accelerate the kinetics of the uric acid (UA) oxidation (8.4 times compared to the blank electrode), and allows us to detect UA even in the nanomolar range. Experimental observations have been supported by density functional theory calculation to approximate the effective Au-Au displacement with a suitable percentage of Ag in different HNPrs to explain their measured catalytic activity. Copyright © 2019 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Nano Materialsen_US
dc.subjectBinary alloysen_US
dc.subjectCatalyst activityen_US
dc.subjectCoordination reactionsen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectrocatalysisen_US
dc.subjectElectrocatalystsen_US
dc.subjectGold alloysen_US
dc.subjectGrain boundariesen_US
dc.subjectNanoparticlesen_US
dc.subjectPraseodymium compoundsen_US
dc.subjectRedox reactionsen_US
dc.subjectSilver alloysen_US
dc.subjectTensile strainen_US
dc.subjectAdsorption efficiencyen_US
dc.subjectAu-Ag alloy nanoparticlesen_US
dc.subjectD orbitalsen_US
dc.subjectEffective surface areaen_US
dc.subjectGalvanic replacementsen_US
dc.subjectKirkendall effectsen_US
dc.subjectNano-porousen_US
dc.subjectSeed mediated growthen_US
dc.subjectNitrogen compoundsen_US
dc.titleZone-Specific Crystallization and a Porosity-Directed Scaling Marker for the Catalytic Efficacy of Au-Ag Alloy Nanoparticlesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: