Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8862
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnsari, Shagufi Nazen_US
dc.contributor.authorMobin, Shaikh M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:03Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:03Z-
dc.date.issued2019-
dc.identifier.citationKumari, P., Ansari, S. N., Kumar, R., Saini, A. K., & Mobin, S. M. (2019). Design and construction of aroyl-hydrazone derivatives: Synthesis, crystal structure, molecular docking and their biological activities. Chemistry and Biodiversity, 16(11) doi:10.1002/cbdv.201900315en_US
dc.identifier.issn1612-1872-
dc.identifier.otherEID(2-s2.0-85074572016)-
dc.identifier.urihttps://doi.org/10.1002/cbdv.201900315-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8862-
dc.description.abstractHere, we report the synthesis and characterization of four new aroyl-hydrazone derivatives L1–L4, and their structural as well as biological activities have been explored. In addition to docking with bovine serum albumin (BSA) and duplex DNA, the experimental results demonstrate the effective binding of L1–L4 with BSA protein and calf thymus DNA (ct-DNA) which is in agreement with the docking results. Further biological activities of L1–L4 have been examined through molecular docking with different proteins which are involved in the propagation of viral or cancer diseases. L1 shows best binding affinity with influenza A virus polymerase PB2 subunit (2VY7) with binding energy −11.42 kcal/mol and inhibition constant 4.23 nm, whereas L2 strongly bind with the hepatitis C virus NS5B polymerase (2WCX) with binding energy −10.47 kcal/mol and inhibition constant 21.06 nm. Ligand L3 binds strongly with TGF-beta receptor 1 (3FAA) and L4 with cancer-related EphA2 protein kinases (1MQB) with binding energy −10.61 kcal/mol, −10.02 kcal/mol and inhibition constant 16.67 nm and 45.41 nm, respectively. The binding energies of L1–L4 are comparable with binding energies of their proven inhibitors. L1, L3 and L4 can be considered as both 3FAA and 1MQB dual targeting anticancer agents, while L1 and L3 are both 2VY7 and 2WCX dual targeting antiviral agents. On the other side, L2 and L4 target only one virus related target (2WCX). Furthermore, the geometry optimizations of L1–L4 were performed via density functional theory (DFT). Moreover, all four ligands (L1–L4) were characterized by NMR, FT-IR, ESI-MS, elemental analysis and their molecular structures were validated by single crystal X-ray diffraction studies. © 2019 Wiley-VHCA AG, Zurich, Switzerlanden_US
dc.language.isoenen_US
dc.publisherWiley-VCH Verlagen_US
dc.sourceChemistry and Biodiversityen_US
dc.subjectbovine serum albuminen_US
dc.subjectC21H17N5O8en_US
dc.subjectC23H15N7O2en_US
dc.subjectC31H23N7O2en_US
dc.subjectC33H25N5O2en_US
dc.subjectdipicolinic aciden_US
dc.subjectdouble stranded DNAen_US
dc.subjecthydrazone derivativeen_US
dc.subjectnonstructural protein 5Ben_US
dc.subjectserum albuminen_US
dc.subjecttryptophanen_US
dc.subjectunclassified drugen_US
dc.subjectantineoplastic agenten_US
dc.subjectantivirus agenten_US
dc.subjectcalf thymus DNAen_US
dc.subjectDNAen_US
dc.subjecthydrazone derivativeen_US
dc.subjectliganden_US
dc.subjectArticleen_US
dc.subjectbinding affinityen_US
dc.subjectbinding siteen_US
dc.subjectbiological activityen_US
dc.subjectcarbon nuclear magnetic resonanceen_US
dc.subjectchemical structureen_US
dc.subjectcrystal structureen_US
dc.subjectDNA bindingen_US
dc.subjectdrug synthesisen_US
dc.subjectelectrospray mass spectrometryen_US
dc.subjectelemental analysisen_US
dc.subjectfluorescenceen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectgeometryen_US
dc.subjecthumanen_US
dc.subjecthydrogen bonden_US
dc.subjectInfluenza A virusen_US
dc.subjectmolecular dockingen_US
dc.subjectprotein bindingen_US
dc.subjectproton nuclear magnetic resonanceen_US
dc.subjecttemperatureen_US
dc.subjectX ray diffractionen_US
dc.subjectanimalen_US
dc.subjectbovineen_US
dc.subjectcell proliferationen_US
dc.subjectchemistryen_US
dc.subjectdensity functional theoryen_US
dc.subjectdrug designen_US
dc.subjectdrug effecten_US
dc.subjectdrug screeningen_US
dc.subjectHepacivirusen_US
dc.subjectmicrobial sensitivity testen_US
dc.subjectmolecular dockingen_US
dc.subjectsynthesisen_US
dc.subjectX ray crystallographyen_US
dc.subjectAnimalsen_US
dc.subjectAntineoplastic Agentsen_US
dc.subjectAntiviral Agentsen_US
dc.subjectCattleen_US
dc.subjectCell Proliferationen_US
dc.subjectCrystallography, X-Rayen_US
dc.subjectDensity Functional Theoryen_US
dc.subjectDNAen_US
dc.subjectDrug Designen_US
dc.subjectDrug Screening Assays, Antitumoren_US
dc.subjectHepacivirusen_US
dc.subjectHydrazonesen_US
dc.subjectInfluenza A virusen_US
dc.subjectLigandsen_US
dc.subjectMicrobial Sensitivity Testsen_US
dc.subjectMolecular Docking Simulationen_US
dc.subjectMolecular Structureen_US
dc.subjectSerum Albumin, Bovineen_US
dc.titleDesign and Construction of Aroyl-Hydrazone Derivatives: Synthesis, Crystal Structure, Molecular Docking and Their Biological Activitiesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: