Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8866
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanchariya, Dharmendra K.en_US
dc.contributor.authorEmadabathuni, Anil Kumaren_US
dc.contributor.authorSingh, Sanjay Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:04Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:04Z-
dc.date.issued2019-
dc.identifier.citationPanchariya, D. K., Kumar, E. A., & Singh, S. K. (2019). Inducing in situ hydrothermal carbonization of glucose to synthesize carbon-MIL-101 hybrid composites for improved hydrogen uptake. Energy and Fuels, 33(10), 10123-10132. doi:10.1021/acs.energyfuels.9b01809en_US
dc.identifier.issn0887-0624-
dc.identifier.otherEID(2-s2.0-85072805230)-
dc.identifier.urihttps://doi.org/10.1021/acs.energyfuels.9b01809-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8866-
dc.description.abstractA sustainable methodology was explored to synthesize carbon-MIL-101 hybrid composites by advantageously inducing in situ hydrothermal carbonization (HTC) of glucose during the synthesis of MIL-101. Carbon-MIL-101 hybrid composites with varying carbon contents were synthesized by tuning the content of glucose. The HTC of glucose and incorporation of carbon in MIL-101 were confirmed by probing 13C nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman investigations. The microporosity of composites can be fine-tuned by optimizing the carbon loading. Consequently, the carbon-MIL-101 hybrid composites with an optimized pore size and high pore volume and surface area conferred enhanced H2 uptake properties (by ca. 11% compared to MIL-101) at 77 K and 1 bar. The noteworthy enhancement in H2 uptake for the synthesized carbon-MIL-101 hybrid composites endorsed the potential of the studied methodology to design hybrid metal-organic framework composites with tuned porosity for H2 storage application. Copyright © 2019 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceEnergy and Fuelsen_US
dc.subjectCarbonizationen_US
dc.subjectCrystalline materialsen_US
dc.subjectGlucoseen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectHydrogenen_US
dc.subjectHydrothermal synthesisen_US
dc.subjectNuclear magnetic resonance spectroscopyen_US
dc.subjectOrganometallicsen_US
dc.subjectPore sizeen_US
dc.subjectThermochemistryen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.subjectCarbon loadingsen_US
dc.subjectHigh pore volumesen_US
dc.subjectHybrid compositesen_US
dc.subjectHydrogen uptakeen_US
dc.subjectHydrothermal carbonizationen_US
dc.subjectMetal organic frameworken_US
dc.subjectRaman investigationsen_US
dc.subjectSynthesized carbonen_US
dc.subjectCarbonen_US
dc.titleInducing in Situ Hydrothermal Carbonization of Glucose to Synthesize Carbon-MIL-101 Hybrid Composites for Improved Hydrogen Uptakeen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: