Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Sourabhen_US
dc.contributor.authorKumawat, Rameshwar L.en_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:12Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:12Z-
dc.date.issued2019-
dc.identifier.citationKumar, S., Kumawat, R. L., & Pathak, B. (2019). Spin-polarized current in ferromagnetic half-metallic transition-metal iodide nanowires. Journal of Physical Chemistry C, 123(25), 15717-15723. doi:10.1021/acs.jpcc.9b02464en_US
dc.identifier.issn1932-7447-
dc.identifier.otherEID(2-s2.0-85068479083)-
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.9b02464-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8903-
dc.description.abstractThe fabrication of spin-logic circuits at the nanoscale is essential for both research and industrial purposes. Half-metallic systems play a key role in the development of these nanostructure devices in terms of energy efficiency and accuracy because of 100% spin polarization. Inspired from the recent literature on transition-metal iodides, here, we have proposed transition-metal iodide-based nanowires. The transition-metal halide-based nanowires are experimentally known from a long-time (Poineau, F.; Rodriguez, E. E.; Forster, P. M.; Sattelberger, A. P.; Cheetham, A. K.; Czerwinski, K. R. J. Am. Chem. Soc. 2009, 131, 910-911). Here, among all the nanowires, the vanadium-based nanowire is proposed to be ferromagnetic and half-metallic. The most important thing that comes out in the picture is the strong metal-metal interaction. Here, transition-metal dimer plays a crucial role in determining the intriguing electronic and magnetic properties. With the help of crystal orbital Hamilton population analysis, we have tried to explain the role of a spin dimer in the formation of the magnetic ground state. An increase in ferromagnetic exchange coupling is also observed with the applied tensile strain. Furthermore, the transport calculations reveal a nearly 100% spin-polarized current in the half-metallic system. © Copyright 2019 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceJournal of Physical Chemistry Cen_US
dc.subjectComputer circuitsen_US
dc.subjectEnergy efficiencyen_US
dc.subjectFerromagnetic materialsen_US
dc.subjectFerromagnetismen_US
dc.subjectGround stateen_US
dc.subjectIndustrial researchen_US
dc.subjectMetal halidesen_US
dc.subjectMetallographyen_US
dc.subjectNanowiresen_US
dc.subjectSpin polarizationen_US
dc.subjectTensile strainen_US
dc.subjectCrystal orbital Hamilton populationsen_US
dc.subjectElectronic and magnetic propertiesen_US
dc.subjectFerromagnetic exchange couplingsen_US
dc.subjectMagnetic ground stateen_US
dc.subjectMetal-metal interactionsen_US
dc.subjectNanostructure devicesen_US
dc.subjectSpin polarized currentsen_US
dc.subjectTransition-metal dimersen_US
dc.subjectTransition metalsen_US
dc.titleSpin-Polarized Current in Ferromagnetic Half-Metallic Transition-Metal Iodide Nanowiresen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: