Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/8941
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumawat, Rameshwar L.en_US
dc.contributor.authorGarg, Priyankaen_US
dc.contributor.authorKumar, Sourabhen_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:21Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:21Z-
dc.date.issued2019-
dc.identifier.citationKumawat, R. L., Garg, P., Kumar, S., & Pathak, B. (2019). Electronic transport through DNA nucleotides in atomically thin phosphorene electrodes for rapid DNA sequencing. ACS Applied Materials and Interfaces, 11(1), 219-225. doi:10.1021/acsami.8b17239en_US
dc.identifier.issn1944-8244-
dc.identifier.otherEID(2-s2.0-85059373220)-
dc.identifier.urihttps://doi.org/10.1021/acsami.8b17239-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/8941-
dc.description.abstractRapid progresses in developing the fast, low-cost, and reliable methods for DNA sequencing are envisaged for development of personalized medicine. In this respect, nanotechnology has paved the role for the development of advanced DNA sequencing techniques including sequencing with solid-state nanopores or nanogaps. Herein, we have explored the application of a black phosphorene based nanogap-device for DNA sequencing. Using density-functional-theory based non-equilibrium Green's function approach, we have computed transverse transmission and current-voltage (I-V) characteristics of all the four DNA nucleotides (deoxy adenosine monophosphate, deoxy guanidine monophosphate, deoxy thymidine monophosphate, and deoxy cytosine monophosphate) as functions of applied bias voltages. We deduce that it is in principle; possible to differentiate between all the four nucleotides by three sequencing runs at distinct applied bias voltages, i.e., at 0.2, 1.4, and 1.6 V, where individual identification of all the four nucleotides may be possible. Hence, we believe our study might be helpful for experimentalist towards the development of a phosphorene based nanodevice for DNA sequencing to diagnose critical diseases. © 2018 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Materials and Interfacesen_US
dc.subjectBias voltageen_US
dc.subjectDensity functional theoryen_US
dc.subjectDNAen_US
dc.subjectDNA sequencesen_US
dc.subjectNanostructuresen_US
dc.subjectNucleotidesen_US
dc.subjectAdenosine monophosphateen_US
dc.subjectApplied bias voltageen_US
dc.subjectblack phosphoreneen_US
dc.subjectDNA Sequencingen_US
dc.subjectIndividual identificationen_US
dc.subjectIV characteristicsen_US
dc.subjectNon-equilibrium Green's functionen_US
dc.subjectPersonalized medicinesen_US
dc.subjectGene encodingen_US
dc.subjectDNAen_US
dc.subjectnucleotideen_US
dc.subjectchemistryen_US
dc.subjectDNA sequenceen_US
dc.subjectelectrodeen_US
dc.subjectelectron transporten_US
dc.subjectnanoporeen_US
dc.subjectproceduresen_US
dc.subjectDNAen_US
dc.subjectElectrodesen_US
dc.subjectElectron Transporten_US
dc.subjectNanoporesen_US
dc.subjectNucleotidesen_US
dc.subjectSequence Analysis, DNAen_US
dc.titleElectronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencingen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: