Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/9023
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPathak, Biswarupen_US
dc.contributor.authorRawat, Kuber Singhen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:42Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:42Z-
dc.date.issued2018-
dc.identifier.citationDe, S. K., Mondal, S., Sen, P., Pal, U., Pathak, B., Rawat, K. S., . . . Senapati, D. (2018). Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid. Nanoscale, 10(23), 11091-11102. doi:10.1039/c8nr03087aen_US
dc.identifier.issn2040-3364-
dc.identifier.otherEID(2-s2.0-85048686019)-
dc.identifier.urihttps://doi.org/10.1039/c8nr03087a-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/9023-
dc.description.abstractUnderstanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample. © 2018 The Royal Society of Chemistry.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceNanoscaleen_US
dc.subjectCatalyst activityen_US
dc.subjectCrystal defectsen_US
dc.subjectDensity functional theoryen_US
dc.subjectEfficiencyen_US
dc.subjectElectrocatalysisen_US
dc.subjectElectrochemical impedance spectroscopyen_US
dc.subjectGolden_US
dc.subjectGold compoundsen_US
dc.subjectHydrogen bondsen_US
dc.subjectNanoflowersen_US
dc.subjectReaction intermediatesen_US
dc.subjectVoltammetryen_US
dc.subjectActive electrode materialsen_US
dc.subjectCatalytic efficienciesen_US
dc.subjectDifferential pulse voltammetryen_US
dc.subjectElectrocatalytic activityen_US
dc.subjectElectrocatalytic efficienciesen_US
dc.subjectNanomolar concentrationen_US
dc.subjectStructural transitionsen_US
dc.subjectVariable concentrationen_US
dc.subjectAscorbic aciden_US
dc.subjectascorbic aciden_US
dc.subjectgolden_US
dc.subjectnanomaterialen_US
dc.subjectelectrodeen_US
dc.subjectimpedance spectroscopyen_US
dc.subjectAscorbic Aciden_US
dc.subjectDielectric Spectroscopyen_US
dc.subjectElectrodesen_US
dc.subjectGolden_US
dc.subjectNanostructuresen_US
dc.titleCrystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic aciden_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: