Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/9084
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMisra, Rajneeshen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:30:59Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:30:59Z-
dc.date.issued2018-
dc.identifier.citationAnsari, M. S., Maragani, R., Banik, A., Misra, R., & Qureshi, M. (2018). Enhanced photovoltaic performance using biomass derived nano 3D ZnO hierarchical superstructures and a D−A type CS-symmetric triphenylamine linked bisthiazole. Electrochimica Acta, 259, 262-275. doi:10.1016/j.electacta.2017.10.174en_US
dc.identifier.issn0013-4686-
dc.identifier.otherEID(2-s2.0-85032682274)-
dc.identifier.urihttps://doi.org/10.1016/j.electacta.2017.10.174-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/9084-
dc.description.abstractHerein, a facile one step hydrothermal route for the controlled, biomass assisted synthesis of three dimensional (3D) Zinc oxide (ZnO) hierarchical superstructures (HSs), assembled with compacted ZnO nanorods (NRs) is reported. Anionic polysaccharide “Polygalacturonic acid” is utilized as a crystal growth modifier for assembling the basic building blocks (ZnO NRs). Probable mechanism for the formation of superstructures through the interaction between the polysaccharide and ZnO growth units is discussed. Photovoltaic properties of as-synthesized 3D ZnO HSs as compared to its basic structural unit i.e., ZnO NRs are investigated by sensitizing with a bisthiazole linked metal free donor-acceptor dye; D1. A substantial enhancement (∼35%) in efficiency (η) for 3D ZnO HSs based device (η ≈ 5.37%) as compare to ZnO NRs (η ≈ 3.48%) is being observed, mainly due to better charge separation and collection, owing to a superior electron transport ability of compacted building blocks, better light-scattering effect, higher BET surface area for sensitizer loading and efficient electron injection from dye D1 to the ZnO. Electrochemical impedance spectroscopic (EIS) analysis is carried out to support a slower photogenerated electron-hole recombination rate and better charge transports in the 3D ZnO HSs based photovoltaic device. © 2017 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceElectrochimica Actaen_US
dc.subjectEcologyen_US
dc.subjectElectron transport propertiesen_US
dc.subjectHydrothermal synthesisen_US
dc.subjectLight scatteringen_US
dc.subjectNanorodsen_US
dc.subjectSpectroscopic analysisen_US
dc.subjectZinc oxideen_US
dc.subjectAnionic polysaccharidesen_US
dc.subjectBio-templateen_US
dc.subjectBisthiazoleen_US
dc.subjectCharge separationsen_US
dc.subjectHierarchical superstructureen_US
dc.subjectPhotovoltaicen_US
dc.subjectZinc compoundsen_US
dc.titleEnhanced photovoltaic performance using biomass derived nano 3D ZnO hierarchical superstructures and a D−A type CS-Symmetric triphenylamine linked bisthiazoleen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: