Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/9110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhauriyal, Preetien_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:31:06Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:31:06Z-
dc.date.issued2017-
dc.identifier.citationBhauriyal, P., Mahata, A., & Pathak, B. (2017). A computational study of a single-walled carbon-nanotube-based ultrafast high-capacity aluminum battery. Chemistry - an Asian Journal, 12(15), 1944-1951. doi:10.1002/asia.201700570en_US
dc.identifier.issn1861-4728-
dc.identifier.otherEID(2-s2.0-85021932256)-
dc.identifier.urihttps://doi.org/10.1002/asia.201700570-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/9110-
dc.description.abstractExploring suitable electrode materials is a fundamental step toward developing Al batteries with enhanced performance. In this work, we explore using density functional theory calculations the feasibility of single-walled carbon nanotubes (SWNTs) as a cathode material for Al batteries. Carbon nanotubes with hollow structures and large surface area are able to overcome the difficulty of activating the opening of interlayer spaces as observed in graphite electrode during the first intercalation cycle. Our results show that AlCl4 binds strongly with the SWNT to result in an energetically and thermally stable AlCl4-adsorbed SWNT system. Diffusion calculations show that the SWNT system allows ultrafast diffusion of AlCl4 with a more favorable inner surface diffusion than outer surface diffusion. Our charge-density difference and Bader atomic charge analysis confirm the oxidation of SWNT upon adsorption of AlCl4, which shows a similar behavior to the previously studied graphite cathode. The average open-circuit voltage and AlCl4 storage capacity increases with increasing SWNT diameter and can be as high as 1.96 V and 275 mA h g−1 in (25,25) SWNT relative to graphite (70 mA h g−1). All of these properties show that SWNTs are a potential cathode material for high-performance Al batteries and should be explored further. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.sourceChemistry - An Asian Journalen_US
dc.subjectAluminumen_US
dc.subjectCarbonen_US
dc.subjectCarbon nanotubesen_US
dc.subjectCathodesen_US
dc.subjectComputation theoryen_US
dc.subjectDensity functional theoryen_US
dc.subjectDiffusionen_US
dc.subjectElectric batteriesen_US
dc.subjectElectrochemistryen_US
dc.subjectElectrodesen_US
dc.subjectGraphiteen_US
dc.subjectGraphite electrodesen_US
dc.subjectNanotubesen_US
dc.subjectOpen circuit voltageen_US
dc.subjectSurface diffusionen_US
dc.subjectYarnen_US
dc.subjectCath-ode materialsen_US
dc.subjectCharge density differenceen_US
dc.subjectComputational studiesen_US
dc.subjectDiffusion calculationen_US
dc.subjectElectrode materialen_US
dc.subjectInterlayer spacesen_US
dc.subjectLarge surface areaen_US
dc.subjectSingle-walled carbon nanotube (SWNTs)en_US
dc.subjectSingle-walled carbon nanotubes (SWCN)en_US
dc.titleA Computational Study of a Single-Walled Carbon-Nanotube-Based Ultrafast High-Capacity Aluminum Batteryen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: