Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/9132
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJindal, Shwetaen_US
dc.contributor.authorBulusu, Satya Silendraen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:31:13Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:31:13Z-
dc.date.issued2017-
dc.identifier.citationChiriki, S., Jindal, S., & Bulusu, S. S. (2017). Neural network potentials for dynamics and thermodynamics of gold nanoparticles. Journal of Chemical Physics, 146(8) doi:10.1063/1.4977050en_US
dc.identifier.issn0021-9606-
dc.identifier.otherEID(2-s2.0-85014511139)-
dc.identifier.urihttps://doi.org/10.1063/1.4977050-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/9132-
dc.description.abstractFor understanding the dynamical and thermodynamical properties of metal nanoparticles, one has to go beyond static and structural predictions of a nanoparticle. Accurate description of dynamical properties may be computationally intensive depending on the size of nanoparticle. Herein, we demonstrate the use of atomistic neural network potentials, obtained by fitting quantum mechanical data, for extensive molecular dynamics simulations of gold nanoparticles. The fitted potential was tested by performing global optimizations of size selected gold nanoparticles (Aun, 17 ≤ n ≤ 58). We performed molecular dynamics simulations in canonical (NVT) and microcanonical (NVE) ensembles on Au17, Au34, Au58 for a total simulation time of around 3 ns for each nanoparticle. Our study based on both NVT and NVE ensembles indicate that there is a dynamical coexistence of solid-like and liquid-like phases near melting transition. We estimate the probability at finite temperatures for set of isomers lying below 0.5 eV from the global minimum structure. In the case of Au17 and Au58, the properties can be estimated using global minimum structure at room temperature, while for Au34, global minimum structure is not a dominant structure even at low temperatures. © 2017 Author(s).en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.sourceJournal of Chemical Physicsen_US
dc.subjectFiber optic sensorsen_US
dc.subjectGlobal optimizationen_US
dc.subjectIsomersen_US
dc.subjectMetal nanoparticlesen_US
dc.subjectMolecular dynamicsen_US
dc.subjectNanoparticlesen_US
dc.subjectQuantum theoryen_US
dc.subjectTemperatureen_US
dc.subjectThermodynamicsen_US
dc.subjectDynamical propertiesen_US
dc.subjectFinite temperaturesen_US
dc.subjectGlobal minimum structureen_US
dc.subjectGold Nanoparticlesen_US
dc.subjectMelting transitionsen_US
dc.subjectMolecular dynamics simulationsen_US
dc.subjectQuantum mechanicalen_US
dc.subjectThermodynamical propertiesen_US
dc.subjectGolden_US
dc.titleNeural network potentials for dynamics and thermodynamics of gold nanoparticlesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: