Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/9186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukherjee, Tushar Kantien_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T11:31:30Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T11:31:30Z-
dc.date.issued2016-
dc.identifier.citationChatterjee, S., & Mukherjee, T. K. (2016). Insights into the morphology of human serum albumin and sodium dodecyl sulfate complex: A spectroscopic and microscopic approach. Journal of Colloid and Interface Science, 478, 29-35. doi:10.1016/j.jcis.2016.05.055en_US
dc.identifier.issn0021-9797-
dc.identifier.otherEID(2-s2.0-84973110892)-
dc.identifier.urihttps://doi.org/10.1016/j.jcis.2016.05.055-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/9186-
dc.description.abstractExploring and understanding the fundamental interaction between protein and surfactant is utmost important for various pharmaceutical and biomedical applications. However, very less is known about the arrangement of individual negatively charged sodium dodecyl sulfate (SDS) molecules on the human serum albumin (HSA). Here, we have investigated the morphology and mechanistic insights of complexation between HSA and SDS by means of photoluminescence (PL) spectroscopy, circular dichroism (CD) and PL microscopy using amine-functionalized silicon quantum dot (Si QD) as an external luminescent marker. The present study is based on a unique and dynamic SDS-Si QD system. The synthesized allylamine-functionalized Si QDs show a distinct PL band centered at 455 nm upon excitation at 375 nm. At neutral pH, these Si QDs form ordered aggregates in the presence of 1 mM SDS due to the hydrogen bonding interaction with the sulfate head groups of surfactants, which is manifested in the appearance of a large Stokes shifted luminescence band centered at 610 nm. It has been observed that the PL intensity of SDS-Si QD aggregates at 610 nm decreases gradually with concomitant increase in the PL intensity of monomeric Si QDs at 455 nm upon increasing the concentration of HSA from 1 to 10 μM. These observations combined with PL lifetime, PL microscopy and CD results reveal that SDS forms micelle-like aggregates on the partially unfolded HSA mainly via electrostatic interaction between negatively charged sulfate head groups and positively charged residues of partially unfolded HSA. For the present HSA-SDS system, our results fit a model with type I "necklace and bead"-like structures, where micelle-like SDS aggregates wrap around by the partially unfolded HSA backbone. © 2016.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc.en_US
dc.sourceJournal of Colloid and Interface Scienceen_US
dc.subjectAggregatesen_US
dc.subjectBody fluidsen_US
dc.subjectCircular dichroism spectroscopyen_US
dc.subjectDichroismen_US
dc.subjectDyesen_US
dc.subjectFluorescence spectroscopyen_US
dc.subjectHydrogen bondsen_US
dc.subjectLuminescenceen_US
dc.subjectMedical applicationsen_US
dc.subjectMicellesen_US
dc.subjectPhotoluminescenceen_US
dc.subjectPhotoluminescence spectroscopyen_US
dc.subjectProteinsen_US
dc.subjectSemiconductor quantum dotsen_US
dc.subjectSiliconen_US
dc.subjectSodiumen_US
dc.subjectSodium sulfateen_US
dc.subjectSulfur compoundsen_US
dc.subjectSurface active agentsen_US
dc.subjectBead modelsen_US
dc.subjectBiomedical applicationsen_US
dc.subjectHuman serum albuminsen_US
dc.subjectHydrogen bonding interactionsen_US
dc.subjectPhotoluminescence microscopyen_US
dc.subjectPositively chargeden_US
dc.subjectProtein-surfactant complexen_US
dc.subjectSilicon quantum dotsen_US
dc.subjectSodium dodecyl sulfateen_US
dc.subjectamineen_US
dc.subjectdodecyl sulfate sodiumen_US
dc.subjecthuman serum albuminen_US
dc.subjectluminescent agenten_US
dc.subjectquantum doten_US
dc.subjectsiliconen_US
dc.subjectdodecyl sulfate sodiumen_US
dc.subjectserum albuminen_US
dc.subjectArticleen_US
dc.subjectbleachingen_US
dc.subjectcircular dichroismen_US
dc.subjectcomplex formationen_US
dc.subjecthumanen_US
dc.subjecthydrodynamicsen_US
dc.subjecthydrogen bonden_US
dc.subjecthydrophobicityen_US
dc.subjectmicroscopyen_US
dc.subjectpHen_US
dc.subjectphotoluminescenceen_US
dc.subjectphotoluminescence microscopyen_US
dc.subjectphotoluminescence spectroscopyen_US
dc.subjectpriority journalen_US
dc.subjectspectroscopyen_US
dc.subjectstatic electricityen_US
dc.subjectsynthesisen_US
dc.subjectatomic force microscopyen_US
dc.subjectchemistryen_US
dc.subjectcircular dichroismen_US
dc.subjectinfrared spectroscopyen_US
dc.subjectluminescenceen_US
dc.subjectparticle sizeen_US
dc.subjectsurface propertyen_US
dc.subjectultraviolet spectrophotometryen_US
dc.subjectCircular Dichroismen_US
dc.subjectHumansen_US
dc.subjectLuminescent Measurementsen_US
dc.subjectMicroscopy, Atomic Forceen_US
dc.subjectParticle Sizeen_US
dc.subjectQuantum Dotsen_US
dc.subjectSerum Albuminen_US
dc.subjectSiliconen_US
dc.subjectSodium Dodecyl Sulfateen_US
dc.subjectSpectrophotometry, Ultravioleten_US
dc.subjectSpectroscopy, Fourier Transform Infrareden_US
dc.subjectSurface Propertiesen_US
dc.titleInsights into the morphology of human serum albumin and sodium dodecyl sulfate complex: A spectroscopic and microscopic approachen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: