Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11118
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-11-25T12:05:07Z-
dc.date.available2022-11-25T12:05:07Z-
dc.date.issued2022-
dc.identifier.citationMohan, N. J., Murugan, R., Goel, T., Tanveer, M., & Roy, P. (2022). An efficient microaneurysms detection approach in retinal fundus images. International Journal of Machine Learning and Cybernetics, doi:10.1007/s13042-022-01696-3en_US
dc.identifier.issn1868-8071-
dc.identifier.otherEID(2-s2.0-85141209956)-
dc.identifier.urihttps://doi.org/10.1007/s13042-022-01696-3-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11118-
dc.description.abstractDiabetic retinopathy (DR) is one of the retinal disorders and the leading cause of blindness worldwide. Microaneurysms (MA) is the first clinical indication of DR, and the detection of MA helps in early diagnosis. The retinal fundus image analysis helps screen DR through MA detection. In general, the MA detection method consists of preprocessing, enhancement, and classification stages. Preprocessing is crucial to improve the retinal features and reduce the imaging artifacts. Reducing these artifacts is one of the challenging research problems in retinal fundus image analysis. In this paper, a novel improved Non-Local Mean filter (INLMF) is proposed to remove the imaging artifacts. The proposed method is tested on publicly available databases and images collected from Hospital. The proposed method has achieved the best performance metric than the state-of-the-art. The computational time per image is 6.2 sec which is less than other methods. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceInternational Journal of Machine Learning and Cyberneticsen_US
dc.subjectDiagnosisen_US
dc.subjectEye protectionen_US
dc.subjectImage enhancementen_US
dc.subjectOphthalmologyen_US
dc.subjectSupport vector machinesen_US
dc.subjectDiabetic retinopathyen_US
dc.subjectEnergy-baseden_US
dc.subjectFundus imageen_US
dc.subjectImproved non-local mean filteren_US
dc.subjectMicroaneurysm detectionsen_US
dc.subjectMicroaneurysmsen_US
dc.subjectNon-local mean filtersen_US
dc.subjectRetinaen_US
dc.subjectRobust energyen_US
dc.subjectRobust energy based twin SVMen_US
dc.subjectImage analysisen_US
dc.titleAn efficient microaneurysms detection approach in retinal fundus imagesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: