Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11895
Title: Hardy–Littlewood–Riesz type equivalent criteria for the Generalized Riemann hypothesis
Authors: Garg, Meghali
Maji, Bibekananda
Keywords: Dirichlet L-function;Equivalent criteria;Generalized Riemann hypothesis;Non-trivial zeros;Riemann zeta function
Issue Date: 2023
Publisher: Springer
Citation: Garg, M., & Maji, B. (2023). Hardy–Littlewood–Riesz type equivalent criteria for the generalized riemann hypothesis. Monatshefte Fur Mathematik, 201(3), 771-788. doi:10.1007/s00605-023-01857-8
Abstract: In the present paper, we prove that the generalized Riemann hypothesis for the Dirichlet L-function L(s, χ) is equivalent to the following bound: Let k≥ 1 and ℓ be positive real numbers. For any ϵ> 0 , we have ∑n=1∞χ(n)μ(n)nkexp(-xnℓ)=Oϵ,k,ℓ(x-kℓ+12ℓ+ϵ),asx→∞,where χ is a primitive Dirichlet character modulo q, and μ(n) denotes the Möbius function. This bound generalizes the previous bounds given by Riesz, and Hardy–Littlewood. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
URI: https://doi.org/10.1007/s00605-023-01857-8
https://dspace.iiti.ac.in/handle/123456789/11895
ISSN: 0026-9255
Type of Material: Journal Article
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: