Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/12591
Title: | MahaEmoSen: Towards Emotion-aware Multimodal Marathi Sentiment Analysis |
Authors: | Chaudhari, Prasad Nandeshwar, Pankaj Bansal, Shubhi Kumar, Nagendra |
Keywords: | emotions;Marathi;multimodal data classification;Sentiment analysis |
Issue Date: | 2023 |
Publisher: | Association for Computing Machinery |
Citation: | Chaudhari, P., Nandeshwar, P., Bansal, S., & Kumar, N. (2023). MahaEmoSen: Towards Emotion-aware Multimodal Marathi Sentiment Analysis. ACM Transactions on Asian and Low-Resource Language Information Processing. Scopus. https://doi.org/10.1145/3618057 |
Abstract: | With the advent of the Internet, social media platforms have witnessed an enormous increase in user-generated textual and visual content. Microblogs on platforms such as Twitter are extremely useful for comprehending how individuals feel about a specific issue through their posted texts, images, and videos. Owing to the plethora of content generated, it is necessary to derive an insight of its emotional and sentimental inclination. Individuals express themselves in a variety of languages and, lately, the number of people preferring native languages has been consistently increasing. Marathi language is predominantly spoken in the Indian state of Maharashtra. However, sentiment analysis in Marathi has rarely been addressed. In light of the above, we propose an emotion-aware multimodal Marathi sentiment analysis method (MahaEmoSen). Unlike the existing studies, we leverage emotions embedded in tweets besides assimilating the content-based information from the textual and visual modalities of social media posts to perform a sentiment classification. We mitigate the problem of small training sets by implementing data augmentation techniques. A word-level attention mechanism is applied on the textual modality for contextual inference and filtering out noisy words from tweets. Experimental outcomes on real-world social media datasets demonstrate that our proposed method outperforms the existing methods for Marathi sentiment analysis in resource-constrained circumstances. © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. |
URI: | https://doi.org/10.1145/3618057 https://dspace.iiti.ac.in/handle/123456789/12591 |
ISSN: | 2375-4699 |
Type of Material: | Journal Article |
Appears in Collections: | Department of Computer Science and Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: