Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12985
Title: Microsecond dynamics of H10N7 influenza neuraminidase reveals the plasticity of loop regions and drug resistance due to the R292K mutation
Authors: Sk, Md Fulbabu
Samanta, Sunanda
Poddar, Sayan
Kar, Parimal
Keywords: Conformational dynamics;Free energy landscapes;Influenza neuraminidase;Molecular dynamics;Principal component analysis;Protein structure network analysis
Issue Date: 2023
Publisher: John Wiley and Sons Inc
Citation: Shakya, D., Deshpande, V., Goyal, M. K., & Agarwal, M. (2023). PM2.5 air pollution prediction through deep learning using meteorological, vehicular, and emission data: A case study of New Delhi, India. Journal of Cleaner Production. Scopus. https://doi.org/10.1016/j.jclepro.2023.139278
Abstract: At the beginning of the last century, multiple pandemics caused by influenza (flu) viruses severely impacted public health. Despite the development of vaccinations and antiviral medications to prevent and control impending flu outbreaks, unforeseen novel strains and continuously evolving old strains continue to represent a serious threat to human life. Therefore, the recently identified H10N7, for which not much data is available for rational structure-based drug design, needs to be further explored. Here, we investigated the structural dynamics of neuraminidase N7 upon binding of inhibitors, and the drug resistance mechanisms against the oseltamivir (OTV) and laninamivir (LNV) antivirals due to the crucial R292K mutation on the N7 using the computational microscope, molecular dynamics (MD) simulations. In this study, each system underwent long 2 × 1 μs MD simulations to answer the conformational changes and drug resistance mechanisms. These long time-scale dynamics simulations and free energy landscapes demonstrated that the mutant systems showed a high degree of conformational variation compared to their wildtype (WT) counterparts, and the LNV-bound mutant exhibited an extended 150-loop conformation. Further, the molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculation and MM/GBSA free energy decomposition were used to characterize the binding of OTV and LNV with WT, and R292K mutated N7, revealing the R292K mutation as drug-resistant, facilitated by a decline in binding interaction and a reduction in the dehydration penalty. Due to the broader binding pocket cavity of the smaller K292 mutant residue relative to the wildtype, the drug carboxylate to K292 hydrogen bonding was lost, and the area surrounding the K292 residue was more accessible to water molecules. This implies that drug resistance could be reduced by strengthening the hydrogen bond contacts between N7 inhibitors and altered N7, creating inhibitors that can form a hydrogen bond to the mutant K292, or preserving the closed cavity conformations. © 2023 Wiley Periodicals LLC.
URI: https://doi.org/10.1002/jcc.27234
https://dspace.iiti.ac.in/handle/123456789/12985
ISSN: 0192-8651
Type of Material: Journal Article
Appears in Collections:Department of Biosciences and Biomedical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: