Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/13115
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dubey, Mayank | en_US |
dc.contributor.author | Chaudhary, Sumit | en_US |
dc.contributor.author | Patel, Chandrabhan | en_US |
dc.contributor.author | Mahapatra, Brahmadutta | en_US |
dc.contributor.author | Mukherjee, Shaibal | en_US |
dc.date.accessioned | 2024-01-29T05:18:38Z | - |
dc.date.available | 2024-01-29T05:18:38Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Dubey, M., Chaudhary, S., Patel, C., Mahapatra, B., Kumar, S., Kumar, P., Yamamoto, M. T. H., & Mukherjee, S. (2024). Realization of High Photovoltaic Efficiency Devices With Sb $_{\text{2}}$ S $_{\text{3}}$ Absorber Layer. IEEE Transactions on Electron Devices. Scopus. https://doi.org/10.1109/TED.2023.3346852 | en_US |
dc.identifier.issn | 0018-9383 | - |
dc.identifier.other | EID(2-s2.0-85182362770) | - |
dc.identifier.uri | https://doi.org/10.1109/TED.2023.3346852 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/13115 | - |
dc.description.abstract | This study investigates the impact of substrate temperature (<inline-formula> <tex-math notation="LaTeX">$\textit{T}_{\text{sub}}\text{)}$</tex-math> </inline-formula> on the structural, optical, and electrical properties of dual ion beam sputtering (DIBS)-grown Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> thin films. <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{\text{sub}}$</tex-math> </inline-formula> has been systematically varied from room temperature (RT) to 300 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C. X-ray diffraction (XRD) investigation demonstrates the high crystalline quality of the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> thin films, revealing an orthorhombic structure with a characteristic diffraction peak corresponding to (211) plane observed at 28.4<inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>. The field-emission scanning electron microscopy (FESEM) images illustrate that the growth of thin film at 200 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C yields the largest grain size, measuring 62 nm, along with homogeneous and distinct grain morphology. In-depth optical analysis using spectroscopic ellipsometry (SE) with a three-layer model fitting technique indicates a high absorption coefficient (10<inline-formula> <tex-math notation="LaTeX">$^{\text{5}}$</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-\text{1}}\text{)}$</tex-math> </inline-formula> in the UV– | en_US |
dc.description.abstract | VIS spectral region, while the films exhibit direct bandgap values ranging from 1.6 to 2.3 eV. The electrical resistivity and mobility of the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> films are evaluated at RT through four-probe Hall measurements, confirming the stable, repeatable, and reliable p-type electrical conductivity. In addition, the analysis of the p-Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>/n-Si junction demonstrates an exceptional rectification ratio of 100 at <inline-formula> <tex-math notation="LaTeX">$\pm$</tex-math> </inline-formula>1 V. Furthermore, the experimental results are incorporated into the modeling and numerical analysis of Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> heterojunction solar cells using the solar cell capacitance simulator (SCAPS) software. This analysis has identified the optimal thickness for the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> absorber layer to be 1.5 <inline-formula> <tex-math notation="LaTeX">$\mu $</tex-math> </inline-formula>m, resulting in the highest efficiency of 16.39% along with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">$\textit{V}_{\text{oc}}\text{)}$</tex-math> </inline-formula> of 0.949 V, short-circuit current (<inline-formula> <tex-math notation="LaTeX">$\textit{J}_{\text{sc}}\text{)}$</tex-math> </inline-formula> of 24.73 mA/cm<inline-formula> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula>, and fill factor (FF) of 69.81%. IEEE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.source | IEEE Transactions on Electron Devices | en_US |
dc.subject | Absorber layer | en_US |
dc.subject | Hall measurement | en_US |
dc.subject | Optical diffraction | en_US |
dc.subject | Optical films | en_US |
dc.subject | Optical imaging | en_US |
dc.subject | Photovoltaic cells | en_US |
dc.subject | Sb<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> | en_US |
dc.subject | simulation | en_US |
dc.subject | solar cell | en_US |
dc.subject | solar cell capacitance simulator (SCAPS) | en_US |
dc.subject | spectroscopic ellipsometry (SE) | en_US |
dc.subject | Substrates | en_US |
dc.subject | X-ray diffraction | en_US |
dc.subject | X-ray scattering | en_US |
dc.title | Realization of High Photovoltaic Efficiency Devices With Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> Absorber Layer | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Electrical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: