Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/13115
Title: | Realization of High Photovoltaic Efficiency Devices With Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> Absorber Layer |
Authors: | Dubey, Mayank Chaudhary, Sumit Patel, Chandrabhan Mahapatra, Brahmadutta Mukherjee, Shaibal |
Keywords: | Absorber layer;Hall measurement;Optical diffraction;Optical films;Optical imaging;Photovoltaic cells;Sb<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>;simulation;solar cell;solar cell capacitance simulator (SCAPS);spectroscopic ellipsometry (SE);Substrates;X-ray diffraction;X-ray scattering |
Issue Date: | 2024 |
Publisher: | Institute of Electrical and Electronics Engineers Inc. |
Citation: | Dubey, M., Chaudhary, S., Patel, C., Mahapatra, B., Kumar, S., Kumar, P., Yamamoto, M. T. H., & Mukherjee, S. (2024). Realization of High Photovoltaic Efficiency Devices With Sb $_{\text{2}}$ S $_{\text{3}}$ Absorber Layer. IEEE Transactions on Electron Devices. Scopus. https://doi.org/10.1109/TED.2023.3346852 |
Abstract: | This study investigates the impact of substrate temperature (<inline-formula> <tex-math notation="LaTeX">$\textit{T}_{\text{sub}}\text{)}$</tex-math> </inline-formula> on the structural, optical, and electrical properties of dual ion beam sputtering (DIBS)-grown Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> thin films. <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{\text{sub}}$</tex-math> </inline-formula> has been systematically varied from room temperature (RT) to 300 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C. X-ray diffraction (XRD) investigation demonstrates the high crystalline quality of the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> thin films, revealing an orthorhombic structure with a characteristic diffraction peak corresponding to (211) plane observed at 28.4<inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>. The field-emission scanning electron microscopy (FESEM) images illustrate that the growth of thin film at 200 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C yields the largest grain size, measuring 62 nm, along with homogeneous and distinct grain morphology. In-depth optical analysis using spectroscopic ellipsometry (SE) with a three-layer model fitting technique indicates a high absorption coefficient (10<inline-formula> <tex-math notation="LaTeX">$^{\text{5}}$</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-\text{1}}\text{)}$</tex-math> </inline-formula> in the UV– VIS spectral region, while the films exhibit direct bandgap values ranging from 1.6 to 2.3 eV. The electrical resistivity and mobility of the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> films are evaluated at RT through four-probe Hall measurements, confirming the stable, repeatable, and reliable p-type electrical conductivity. In addition, the analysis of the p-Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>/n-Si junction demonstrates an exceptional rectification ratio of 100 at <inline-formula> <tex-math notation="LaTeX">$\pm$</tex-math> </inline-formula>1 V. Furthermore, the experimental results are incorporated into the modeling and numerical analysis of Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> heterojunction solar cells using the solar cell capacitance simulator (SCAPS) software. This analysis has identified the optimal thickness for the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> absorber layer to be 1.5 <inline-formula> <tex-math notation="LaTeX">$\mu $</tex-math> </inline-formula>m, resulting in the highest efficiency of 16.39% along with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">$\textit{V}_{\text{oc}}\text{)}$</tex-math> </inline-formula> of 0.949 V, short-circuit current (<inline-formula> <tex-math notation="LaTeX">$\textit{J}_{\text{sc}}\text{)}$</tex-math> </inline-formula> of 24.73 mA/cm<inline-formula> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula>, and fill factor (FF) of 69.81%. IEEE |
URI: | https://doi.org/10.1109/TED.2023.3346852 https://dspace.iiti.ac.in/handle/123456789/13115 |
ISSN: | 0018-9383 |
Type of Material: | Journal Article |
Appears in Collections: | Department of Electrical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: