Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13115
Title: Realization of High Photovoltaic Efficiency Devices With Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> Absorber Layer
Authors: Dubey, Mayank
Chaudhary, Sumit
Patel, Chandrabhan
Mahapatra, Brahmadutta
Mukherjee, Shaibal
Keywords: Absorber layer;Hall measurement;Optical diffraction;Optical films;Optical imaging;Photovoltaic cells;Sb<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>;simulation;solar cell;solar cell capacitance simulator (SCAPS);spectroscopic ellipsometry (SE);Substrates;X-ray diffraction;X-ray scattering
Issue Date: 2024
Publisher: Institute of Electrical and Electronics Engineers Inc.
Citation: Dubey, M., Chaudhary, S., Patel, C., Mahapatra, B., Kumar, S., Kumar, P., Yamamoto, M. T. H., & Mukherjee, S. (2024). Realization of High Photovoltaic Efficiency Devices With Sb $_{\text{2}}$ S $_{\text{3}}$ Absorber Layer. IEEE Transactions on Electron Devices. Scopus. https://doi.org/10.1109/TED.2023.3346852
Abstract: This study investigates the impact of substrate temperature (<inline-formula> <tex-math notation="LaTeX">$\textit{T}_{\text{sub}}\text{)}$</tex-math> </inline-formula> on the structural, optical, and electrical properties of dual ion beam sputtering (DIBS)-grown Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> thin films. <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{\text{sub}}$</tex-math> </inline-formula> has been systematically varied from room temperature (RT) to 300 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C. X-ray diffraction (XRD) investigation demonstrates the high crystalline quality of the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> thin films, revealing an orthorhombic structure with a characteristic diffraction peak corresponding to (211) plane observed at 28.4<inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>. The field-emission scanning electron microscopy (FESEM) images illustrate that the growth of thin film at 200 <inline-formula> <tex-math notation="LaTeX">$^{\circ}$</tex-math> </inline-formula>C yields the largest grain size, measuring 62 nm, along with homogeneous and distinct grain morphology. In-depth optical analysis using spectroscopic ellipsometry (SE) with a three-layer model fitting technique indicates a high absorption coefficient (10<inline-formula> <tex-math notation="LaTeX">$^{\text{5}}$</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-\text{1}}\text{)}$</tex-math> </inline-formula> in the UV&#x2013
VIS spectral region, while the films exhibit direct bandgap values ranging from 1.6 to 2.3 eV. The electrical resistivity and mobility of the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> films are evaluated at RT through four-probe Hall measurements, confirming the stable, repeatable, and reliable p-type electrical conductivity. In addition, the analysis of the p-Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>/n-Si junction demonstrates an exceptional rectification ratio of 100 at <inline-formula> <tex-math notation="LaTeX">$\pm$</tex-math> </inline-formula>1 V. Furthermore, the experimental results are incorporated into the modeling and numerical analysis of Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> heterojunction solar cells using the solar cell capacitance simulator (SCAPS) software. This analysis has identified the optimal thickness for the Sb<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>S<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula> absorber layer to be 1.5 <inline-formula> <tex-math notation="LaTeX">$\mu $</tex-math> </inline-formula>m, resulting in the highest efficiency of 16.39% along with open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">$\textit{V}_{\text{oc}}\text{)}$</tex-math> </inline-formula> of 0.949 V, short-circuit current (<inline-formula> <tex-math notation="LaTeX">$\textit{J}_{\text{sc}}\text{)}$</tex-math> </inline-formula> of 24.73 mA/cm<inline-formula> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula>, and fill factor (FF) of 69.81%. IEEE
URI: https://doi.org/10.1109/TED.2023.3346852
https://dspace.iiti.ac.in/handle/123456789/13115
ISSN: 0018-9383
Type of Material: Journal Article
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: