Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKundalwal, Shaileshen_US
dc.date.accessioned2024-01-29T05:19:04Z-
dc.date.available2024-01-29T05:19:04Z-
dc.date.issued2024-
dc.identifier.citationMeguid, S. A., Kundalwal, S. I., & Alian, A. R. (2024). Atomistic modeling of electromechanical properties of piezoelectric zinc oxide nanowires. Nanotechnology. Scopus. https://doi.org/10.1088/1361-6528/ad1841en_US
dc.identifier.issn0957-4484-
dc.identifier.otherEID(2-s2.0-85182277481)-
dc.identifier.urihttps://doi.org/10.1088/1361-6528/ad1841-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13126-
dc.description.abstractCurrently, numerous articles are devoted to examining the influence of geometry and charge distribution on the mechanical properties and structural stability of piezoelectric nanowires (NWs). The varied modeling techniques adopted in earlier molecular dynamics (MD) works dictated the outcome of the different efforts. In this article, comprehensive MD studies are conducted to determine the influence of varied interatomic potentials (partially charged rigid ion model, [PCRIM] ReaxFF, charged optimized many-body [COMB], and Buckingham), geometrical parameters (cross-section geometry, wire diameter, and length), and charge distribution (uniform full charges versus partially charged surface atoms) on the resulting mechanical properties and structural stability of zinc oxide (ZnO) NWs. Our optimized parameters for the Buckingham interatomic potential are in good agreement with the existing experimental results. Furthermore, we found that the incorrect selection of interatomic potentials could lead to excessive overestimate (61%) of the elastic modulus of the NW. While NW length was found to dictate the strain distribution along the wire, impacting its predicted properties, the cross-section shape did not play a major role. Assigning uniform charges for both the core and surface atoms of ZnO NWs leads to a drastic decrease in fracture properties. © 2024 The Author(s). Published by IOP Publishing Ltd.en_US
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.sourceNanotechnologyen_US
dc.subjectcharge distributionen_US
dc.subjectinteratomic potentialsen_US
dc.subjectmechanical propertiesen_US
dc.subjectmolecular dynamicsen_US
dc.subjectzinc oxide nanowireen_US
dc.titleAtomistic modeling of electromechanical properties of piezoelectric zinc oxide nanowiresen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Hybrid Gold-
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: