Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15735
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahoo, Swadesh Kumaren_US
dc.date.accessioned2025-03-03T17:00:45Z-
dc.date.available2025-03-03T17:00:45Z-
dc.date.issued2025-
dc.identifier.citationKarak, N., Koskela, P., Nandi, D., & Sahoo, S. K. (2025). Conformal Composition for Borderline Fractional Sobolev Spaces. Acta Mathematica Sinica, English Series. https://doi.org/10.1007/s10114-025-3649-9en_US
dc.identifier.issn1439-8516-
dc.identifier.otherEID(2-s2.0-85218139735)-
dc.identifier.urihttps://doi.org/10.1007/s10114-025-3649-9-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/15735-
dc.description.abstractWe establish a pointwise property for homogeneous fractional Sobolev spaces in domains with non-empty boundary, extending a similar result of Koskela–Yang–Zhou. We use this to show that a conformal map from the unit disk onto a simply connected planar domain induces a bounded composition operator from the borderline homogeneous fractional Sobolev space of the domain into the corresponding space of the unit disk. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceActa Mathematica Sinica, English Seriesen_US
dc.subjectBesoven_US
dc.subjectconformalen_US
dc.subjectHajłasz–Triebel–Lizorkin hyperbolicen_US
dc.titleConformal Composition for Borderline Fractional Sobolev Spacesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: