Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/15735
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sahoo, Swadesh Kumar | en_US |
dc.date.accessioned | 2025-03-03T17:00:45Z | - |
dc.date.available | 2025-03-03T17:00:45Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Karak, N., Koskela, P., Nandi, D., & Sahoo, S. K. (2025). Conformal Composition for Borderline Fractional Sobolev Spaces. Acta Mathematica Sinica, English Series. https://doi.org/10.1007/s10114-025-3649-9 | en_US |
dc.identifier.issn | 1439-8516 | - |
dc.identifier.other | EID(2-s2.0-85218139735) | - |
dc.identifier.uri | https://doi.org/10.1007/s10114-025-3649-9 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/15735 | - |
dc.description.abstract | We establish a pointwise property for homogeneous fractional Sobolev spaces in domains with non-empty boundary, extending a similar result of Koskela–Yang–Zhou. We use this to show that a conformal map from the unit disk onto a simply connected planar domain induces a bounded composition operator from the borderline homogeneous fractional Sobolev space of the domain into the corresponding space of the unit disk. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.source | Acta Mathematica Sinica, English Series | en_US |
dc.subject | Besov | en_US |
dc.subject | conformal | en_US |
dc.subject | Hajłasz–Triebel–Lizorkin hyperbolic | en_US |
dc.title | Conformal Composition for Borderline Fractional Sobolev Spaces | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: