Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/15735
Title: | Conformal Composition for Borderline Fractional Sobolev Spaces |
Authors: | Sahoo, Swadesh Kumar |
Keywords: | Besov;conformal;Hajłasz–Triebel–Lizorkin hyperbolic |
Issue Date: | 2025 |
Publisher: | Springer Verlag |
Citation: | Karak, N., Koskela, P., Nandi, D., & Sahoo, S. K. (2025). Conformal Composition for Borderline Fractional Sobolev Spaces. Acta Mathematica Sinica, English Series. https://doi.org/10.1007/s10114-025-3649-9 |
Abstract: | We establish a pointwise property for homogeneous fractional Sobolev spaces in domains with non-empty boundary, extending a similar result of Koskela–Yang–Zhou. We use this to show that a conformal map from the unit disk onto a simply connected planar domain induces a bounded composition operator from the borderline homogeneous fractional Sobolev space of the domain into the corresponding space of the unit disk. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025. |
URI: | https://doi.org/10.1007/s10114-025-3649-9 https://dspace.iiti.ac.in/handle/123456789/15735 |
ISSN: | 1439-8516 |
Type of Material: | Journal Article |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: