Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/15735
Title: Conformal Composition for Borderline Fractional Sobolev Spaces
Authors: Sahoo, Swadesh Kumar
Keywords: Besov;conformal;Hajłasz–Triebel–Lizorkin hyperbolic
Issue Date: 2025
Publisher: Springer Verlag
Citation: Karak, N., Koskela, P., Nandi, D., & Sahoo, S. K. (2025). Conformal Composition for Borderline Fractional Sobolev Spaces. Acta Mathematica Sinica, English Series. https://doi.org/10.1007/s10114-025-3649-9
Abstract: We establish a pointwise property for homogeneous fractional Sobolev spaces in domains with non-empty boundary, extending a similar result of Koskela–Yang–Zhou. We use this to show that a conformal map from the unit disk onto a simply connected planar domain induces a bounded composition operator from the borderline homogeneous fractional Sobolev space of the domain into the corresponding space of the unit disk. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025.
URI: https://doi.org/10.1007/s10114-025-3649-9
https://dspace.iiti.ac.in/handle/123456789/15735
ISSN: 1439-8516
Type of Material: Journal Article
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: