Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16700
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgrawal, Ankushen_US
dc.contributor.authorKhurana, Amanen_US
dc.date.accessioned2025-09-04T12:47:42Z-
dc.date.available2025-09-04T12:47:42Z-
dc.date.issued2025-
dc.identifier.citationAgrawal, A., & Khurana, A. (2025). Taut Domains in Particle-Reinforced Electro-Magneto-Active Thin Circular Membrane. Journal of Applied Mechanics, 92(11). https://doi.org/10.1115/1.4068963en_US
dc.identifier.issn0021-8936-
dc.identifier.issn1528-9036-
dc.identifier.otherEID(2-s2.0-105012816473)-
dc.identifier.urihttps://dx.doi.org/10.1115/1.4068963-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16700-
dc.description.abstractElectro-magneto-active (EMA) membranes are materials that combine electromagnetic and active properties to create flexible, responsive surfaces. These membranes typically consist of a soft, elastic matrix embedded with magnetic or electromagnetic particles that can be controlled through external magnetic fields or electric currents. However, the simultaneous application of electric and magnetic fields can induce mechanical instabilities within the membrane, often leading to structural failure. These instabilities, such as wrinkling or pull-in phenomena, arise from the complex interactions between the electromagnetic forces and the material's elastic properties, ultimately compromising the membrane's integrity and functional performance. In this study, key factors driving pull-in and wrinkling instabilities in a particle-reinforced circular membrane are systematically predicted using the framework of taut domain analysis. Specifically, a continuum physics-based model is utilized to predict the critical threshold values within the plane defined by the principal stretches. The model results indicate that adjusting the electric and magnetic field levels can effectively control the size of the taut domains. Moreover, for a fixed level of applied electromagnetic loading, the size of the taut domain increases with higher filler content and a greater shear modulus ratio in the membrane. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.sourceJournal of Applied Mechanicsen_US
dc.subjectAmount Of Fillersen_US
dc.subjectElectro-magneto-elasticityen_US
dc.subjectParticle Reinforcementen_US
dc.subjectShear Modulus Ratioen_US
dc.subjectTaut Domainsen_US
dc.subjectElastic Modulien_US
dc.subjectElasticityen_US
dc.subjectElectromagnetic Fieldsen_US
dc.subjectFailure (mechanical)en_US
dc.subjectFillersen_US
dc.subjectMagnetic Bubblesen_US
dc.subjectMagnetic Fieldsen_US
dc.subjectMagnetic Materialsen_US
dc.subjectMagnetosen_US
dc.subjectMembranesen_US
dc.subjectReinforcementen_US
dc.subjectShear Flowen_US
dc.subjectAmount Of Filleren_US
dc.subjectElectric And Magnetic Fieldsen_US
dc.subjectElectro-magneto-elasticityen_US
dc.subjectMagneto-elasticityen_US
dc.subjectModulus Ratioen_US
dc.subjectParticle Reinforceden_US
dc.subjectParticle Reinforcementen_US
dc.subjectShear Modulus Ratioen_US
dc.subjectTaut Domainen_US
dc.subjectThin Circular Membranesen_US
dc.subjectShear Strainen_US
dc.titleTaut Domains in Particle-Reinforced Electro-Magneto-Active Thin Circular Membraneen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: