Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/16943
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Arpit Kumaren_US
dc.date.accessioned2025-10-23T12:41:57Z-
dc.date.available2025-10-23T12:41:57Z-
dc.date.issued2026-
dc.identifier.citationChauhan, D., Singh, A. K., Tyagi, S., Anand, P. I., Ramakrishna, S. A., & Srivastava, M. K. (2026). Engineering of electrospun lead-free PVDF/Carbon Nanofiber-ZnO nanocomposites for enhanced piezoelectric energy harvesting and wearable sensing applications. Composites Part B: Engineering, 309. https://doi.org/10.1016/j.compositesb.2025.113039en_US
dc.identifier.issn1359-8368-
dc.identifier.otherEID(2-s2.0-105016655169)-
dc.identifier.urihttps://dx.doi.org/10.1016/j.compositesb.2025.113039-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/16943-
dc.description.abstractPoly (vinylidene fluoride) (PVDF) is a promising lead-free piezoelectric polymer; however, its low β-phase fraction and limited charge transport hinder device performance. Here, we report a dual-filler strategy that synergistically integrates surface-functionalized carbon nanofibers (CNFs) and zinc oxide (ZnO) nanorods into electrospun PVDF fibers to simultaneously enhance β-phase nucleation, dipole alignment, and charge mobility. CNFs, at an optimized loading of 0.1 wt%, form conductive stress-transfer networks, while ZnO nanorods (1.5 wt%) with polar wurtzite facets act as efficient nucleating agents, promoting α→β phase transformation through localized electrostatic fields. Systematic variation of filler concentrations revealed that the 0.1 % CNF +1.5 % ZnO composition achieved the highest β-phase content (85.6 %) and piezoelectric coefficient (d<inf>33</inf> = 36 pC/N), yielding an open-circuit voltage of 80 V and power density of 20 mW/cm3 under periodic tapping. The composite nanogenerator demonstrated stable, high-sensitivity performance in wearable sensing applications, including human joint motion monitoring. This work addresses the longstanding challenge of balancing mechanical flexibility with high piezoelectric activity in PVDF-based nanogenerators and establishes a scalable, lead-free approach for high-performance energy harvesting and self-powered sensing devices. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceComposites Part B: Engineeringen_US
dc.subjectCarbon Nanofibersen_US
dc.subjectPiezoelectric Nanogenerator (peng)en_US
dc.subjectPvdfen_US
dc.subjectZnoen_US
dc.subjectCrystallographyen_US
dc.subjectFillersen_US
dc.subjectFluorine Compoundsen_US
dc.subjectNanogeneratorsen_US
dc.subjectOpen Circuit Voltageen_US
dc.subjectPiezoelectric Devicesen_US
dc.subjectPiezoelectricityen_US
dc.subjectWearable Sensorsen_US
dc.subjectZinc Sulfideen_US
dc.subjectCarbon Nanofibresen_US
dc.subjectElectrospunsen_US
dc.subjectLead-freeen_US
dc.subjectPiezoelectric Nanogeneratoren_US
dc.subjectPoly (vinylidene Fluoride)en_US
dc.subjectPoly(vinylidene Fluoride)en_US
dc.subjectSensing Applicationsen_US
dc.subjectWearable Sensingen_US
dc.subjectZinc Oxide Nanorodsen_US
dc.subjectCarbon Nanofibersen_US
dc.subjectIi-vi Semiconductorsen_US
dc.subjectZinc Oxideen_US
dc.titleEngineering of electrospun lead-free PVDF/Carbon Nanofiber-ZnO nanocomposites for enhanced piezoelectric energy harvesting and wearable sensing applicationsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: