Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17149
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKokate, Mahaken_US
dc.contributor.authorKumar, Tarunen_US
dc.contributor.authorKankar, Pavan Kumaren_US
dc.contributor.authorMiglani, Ankuren_US
dc.date.accessioned2025-11-12T16:56:46Z-
dc.date.available2025-11-12T16:56:46Z-
dc.date.issued2026-
dc.identifier.citationKokate, M., Kumar, T., Kankar, P. K., & Miglani, A. (2026). Condition Monitoring of Hydraulic Systems Using Multi-output Classification Convolutional Neural Networks. In Mechanisms and Machine Science (Vol. 185). https://doi.org/10.1007/978-3-031-95963-9_27en_US
dc.identifier.isbn9783031844485-
dc.identifier.isbn9783031284465-
dc.identifier.isbn9783031404580-
dc.identifier.isbn9783031256547-
dc.identifier.isbn9789819947201-
dc.identifier.isbn9783319181257-
dc.identifier.isbn9783031911781-
dc.identifier.isbn9783030918910-
dc.identifier.isbn9789400727205-
dc.identifier.isbn9783319054308-
dc.identifier.issn22110992-
dc.identifier.issn22110984-
dc.identifier.otherEID(2-s2.0-105020241332)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-031-95963-9_27-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17149-
dc.description.abstractHydraulic systems are crucial in aviation and construction applications, efficiently transmitting heavy loads with minimal effort. Condition monitoring techniques are essential for optimizing the quality and performance of hydraulic systems. It serves as a tool for decision-making in maintenance activities, enabling more effective and informed operations. In modern industrial settings, monitoring machinery has become critical for enhancing the cost-efficiency of hydraulic systems. This paper introduces a deep learning (DL) framework utilizing convolutional neural network (CNN) for condition monitoring of hydraulic systems with raw data for health prediction of multiple components such as valves, cooler, accumulators and pump. This method uses CNN to analyze raw time-series sensor data with varying sampling frequencies (100, 10, and 1 Hz) in which the input matrix of the CNN model is a 3-D matrix and predicts the functional state of the hydraulic system. Demonstrating the effectiveness of CNNs in handling multi-output classification tasks by achieving high accuracy across all targets, and evaluated with accuracy, recall, precision, and F1-score and achieved an overall accuracy of 98.5%. This study illustrates the effectiveness of DL techniques in condition monitoring of hydraulic systems for multi-target classification tasks. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.sourceMechanisms and Machine Scienceen_US
dc.subjectClassification tasksen_US
dc.subjectCondition monitoringen_US
dc.subjectHydraulic systemsen_US
dc.subjectMultioutput-CNN modelen_US
dc.subjectTime-series dataen_US
dc.titleCondition Monitoring of Hydraulic Systems Using Multi-output Classification Convolutional Neural Networksen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: