Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/17153
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Tarunen_US
dc.contributor.authorKokate, Mahaken_US
dc.contributor.authorKankar, Pavan Kumaren_US
dc.contributor.authorMiglani, Ankuren_US
dc.date.accessioned2025-11-12T16:56:46Z-
dc.date.available2025-11-12T16:56:46Z-
dc.date.issued2026-
dc.identifier.citationKumar, T., Kokate, M., Kankar, P. K., & Miglani, A. (2026). Predictive Maintenance of Hydraulic Systems Using Multi-task Transfer Learning with Multi-layer Perceptron. In Mechanisms and Machine Science (Vol. 185). https://doi.org/10.1007/978-3-031-95963-9_26en_US
dc.identifier.isbn9783031844485-
dc.identifier.isbn9783031284465-
dc.identifier.isbn9783031404580-
dc.identifier.isbn9783031256547-
dc.identifier.isbn9789819947201-
dc.identifier.isbn9783319181257-
dc.identifier.isbn9783031911781-
dc.identifier.isbn9783030918910-
dc.identifier.isbn9789400727205-
dc.identifier.isbn9783319054308-
dc.identifier.issn22110992-
dc.identifier.issn22110984-
dc.identifier.otherEID(2-s2.0-105020244101)-
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-031-95963-9_26-
dc.identifier.urihttps://dspace.iiti.ac.in:8080/jspui/handle/123456789/17153-
dc.description.abstractCondition monitoring and maintenance of hydraulic systems are essential to ensure their proper working in various applications. This paper uses multi-task transfer learning, which employs shared information between the datasets and creates a machine learning model that is accurate and generalized for more than one dataset. This paper uses multi-layer perceptron (MLP) as the main model architecture for multi-task transfer learning because MLP can find complex features and non-linear interactions in the dataset. After finding satisfactory correlations between the internal pump leakage and valve condition datasets, the multi-task transfer model was trained and tested for the predictive maintenance of pump leakage and valve condition. An accuracy of 94.33% for internal pump leakage and 93.65% for the switching behaviour of hydraulic valves was found. This paper demonstrates that knowledge transfer between two related datasets can play a vital role in significantly improving data-driven models’ performance. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.sourceMechanisms and Machine Scienceen_US
dc.subjectCondition monitoringen_US
dc.subjectMulti-layer perceptronen_US
dc.subjectPump leakageen_US
dc.subjectTransfer learningen_US
dc.subjectValve conditionen_US
dc.titlePredictive Maintenance of Hydraulic Systems Using Multi-task Transfer Learning with Multi-layer Perceptronen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: