Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5397
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Abhisheken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:49Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:49Z-
dc.date.issued2014-
dc.identifier.citationKumar, A., & Kolekar, M. H. (2014). Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals. Paper presented at the 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems, MedCom 2014, 412-416. doi:10.1109/MedCom.2014.7006043en_US
dc.identifier.isbn9781479950973-
dc.identifier.otherEID(2-s2.0-84988260159)-
dc.identifier.urihttps://doi.org/10.1109/MedCom.2014.7006043-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5397-
dc.description.abstractAnalysis of EEG is the primary method for diagnosis of epilepsy. In this paper discrete wavelet transform is used for the time-frequency analysis of EEG signal. Using discrete wavelet transform, EEG signal is decomposed into five different frequency bands namely delta, theta, alpha, beta and gamma. Only theta, alpha and beta carry seizure information. Statistical feature like energy, variance and zero crossing rate and nonlinear feature like fractal dimension is extracted from each of the three sub bands and fed to support vector machine classifier. Support vector machine classifies the input EEG signal into seizure free and seizure signal. Experimental results show that the proposed method classifies EEG signals with excellent accuracy, sensitivity and specificity compared to the existing methods. © 2014 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems, MedCom 2014en_US
dc.subjectArtificial intelligenceen_US
dc.subjectDiagnosisen_US
dc.subjectDiscrete wavelet transformsen_US
dc.subjectElectroencephalographyen_US
dc.subjectFractal dimensionen_US
dc.subjectFractalsen_US
dc.subjectFrequency bandsen_US
dc.subjectLearning systemsen_US
dc.subjectMedical imagingen_US
dc.subjectRadial basis function networksen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectWavelet analysisen_US
dc.subjectEpileptic seizure detectionen_US
dc.subjectGaussian radial basis functionsen_US
dc.subjectMachine learning approachesen_US
dc.subjectseizureen_US
dc.subjectSensitivity and specificityen_US
dc.subjectSupport vector machine classifiersen_US
dc.subjectTime frequency analysisen_US
dc.subjectwaveleten_US
dc.subjectWavelet transformsen_US
dc.titleMachine learning approach for epileptic seizure detection using wavelet analysis of EEG signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: