Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5437
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKushwaha, C. B.en_US
dc.contributor.authorVishvakarma, Santosh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:59Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:59Z-
dc.date.issued2012-
dc.identifier.citationKushwah, C., & Vishvakarma, S. K. (2012). Ultra-low power sub-threshold SRAM cell design to improve read static noise margin doi:10.1007/978-3-642-31494-0_16en_US
dc.identifier.isbn9783642314933-
dc.identifier.issn0302-9743-
dc.identifier.otherEID(2-s2.0-84864302525)-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-31494-0_16-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5437-
dc.description.abstractSub-threshold circuit design is a prevalent selection for ultra-low power (ULP) systems. Static random access memory (SRAM) is an important component in these systems therefore ultra-low power SRAM has become popular. Operation of standard 6T SRAM at sub or near-threshold voltages is unfeasible, predominantly due to degraded static noise margin (SNM) and fluctuations in MOSFET currents because of process variations at ultra-low voltages. Hence, many researchers have deliberated divergent configuration SRAMs for sub-threshold operations having 8T, 9T and 10T bit-cells for enhanced stability. Sub-threshold SRAMs have many important design issues such as cell stability, leakage current and area. In this paper, we give a deep insight of sub-threshold SRAM cell design issues and discuss several important circuit techniques. We emphasize on SRAM cell stability during read operation, develop read port circuits to design an ultra-low power sub-threshold SRAM cell. We propose 9T bit-cell that effectively improve read margin, thereby achieving high cell stability at 45nm technology node. The proposed design shows the full functionality of SRAM cell at a voltage down to around 500-200mV. The proposed design employs standard circuit techniques to improve read margins, as well as to allow a large number of bit-cells on single bit-line. © 2012 Springer-Verlag.en_US
dc.language.isoenen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.subject45nm technologyen_US
dc.subject6T-SRAMen_US
dc.subjectBit linesen_US
dc.subjectCell stabilityen_US
dc.subjectCircuit designsen_US
dc.subjectCircuit techniquesen_US
dc.subjectDesign issuesen_US
dc.subjectEnhanced stabilityen_US
dc.subjectMOS-FETen_US
dc.subjectProcess Variationen_US
dc.subjectRead marginen_US
dc.subjectRead operationen_US
dc.subjectRSNMen_US
dc.subjectSRAM Cellen_US
dc.subjectSram cell stabilityen_US
dc.subjectStatic noise marginen_US
dc.subjectStatic random access memoryen_US
dc.subjectSub-threshold SRAMen_US
dc.subjectSubthresholden_US
dc.subjectSubthreshold operationen_US
dc.subjectULPen_US
dc.subjectUltra-low poweren_US
dc.subjectUltralow voltageen_US
dc.subjectCellsen_US
dc.subjectCytologyen_US
dc.subjectDesignen_US
dc.subjectElectron beam lithographyen_US
dc.subjectIntegrated circuit manufactureen_US
dc.subjectLow power electronicsen_US
dc.subjectThreshold voltageen_US
dc.subjectStatic random access storageen_US
dc.titleUltra-low power sub-threshold SRAM cell design to improve read static noise marginen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: