Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Md Arifen_US
dc.contributor.authorMukherjee, Shaibalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:54Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:54Z-
dc.date.issued2020-
dc.identifier.citationKhan, M. A., Kumar, P., Das, M., Htay, M. T., Agarwal, A., & Mukherjee, S. (2020). Drain current optimization in DIBS-grown MgZnO/CdZnO HFET. IEEE Transactions on Electron Devices, 67(6), 2276-2281. doi:10.1109/TED.2020.2989731en_US
dc.identifier.issn0018-9383-
dc.identifier.otherEID(2-s2.0-85085543322)-
dc.identifier.urihttps://doi.org/10.1109/TED.2020.2989731-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5622-
dc.description.abstractThis article reports the fabrication of a dual-ion beam sputtering (DIBS)-grown MgZnO/CdZnO (MCO)-based gateless heterostructure field-effect transistor (HFET). In addition, this article presents that by introducing a 30-nm yttria spacer layer, the crystallinity of the CdZnO buffer layer can be enhanced and the interface roughness at the heterojunction of the MCO heterostructure can be reduced. Furthermore, the source and drain metal contacts were optimized for the least specific contact resistivity ( \boldsymbol {\rho }_{c} ) yielding metal combination and annealing conditions. The results suggest that the introduction of the yttria spacer layer improves the overall conductance [product of sheet carrier density ( {n}_{s} ) and electron mobility ( \boldsymbol {\mu } )] of MCO up to 3.5\times 10^{15}\,\,\text{V}^{-1}\text{s}^{-1} compared to 9\times 10^{14}\,\,\text{V}^{-1}\text{s}^{-1} in the non-yttria spacer-based MCO. In addition, the drain current ( {I}_{d} )-drain voltage ( {V}_{d} ) characteristic of the as-developed yttria spacer-based MCO HFET shows a high drain current value (400 mA/mm). These results establish the DIBS-grown MCO heterostructure as a viable option for low-cost HFETs necessary for the fabrication of large-scale HFET-based power and sensor devices. © 1963-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Electron Devicesen_US
dc.subjectBuffer layersen_US
dc.subjectCadmium compoundsen_US
dc.subjectCarrier mobilityen_US
dc.subjectCrystallinityen_US
dc.subjectHeterojunctionsen_US
dc.subjectIon beamsen_US
dc.subjectJunction gate field effect transistorsen_US
dc.subjectShimsen_US
dc.subjectSputteringen_US
dc.subjectYttrium oxideen_US
dc.subjectZinc compoundsen_US
dc.subjectAnnealing conditionen_US
dc.subjectCurrent optimizationen_US
dc.subjectDual ion beam sputteringen_US
dc.subjectHeterostructure field-effect transistorsen_US
dc.subjectInterface roughnessen_US
dc.subjectSheet carrier densitiesen_US
dc.subjectSource and drainsen_US
dc.subjectSpecific contact resistivityen_US
dc.subjectDrain currenten_US
dc.titleDrain Current Optimization in DIBS-Grown MgZnO/CdZnO HFETen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: