Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5692
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:19Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:19Z-
dc.date.issued2019-
dc.identifier.citationGaur, P., McCreadie, K., Pachori, R. B., Wang, H., & Prasad, G. (2019). Tangent space features-based transfer learning classification model for two-class motor imagery brain-computer interface. International Journal of Neural Systems, 29(10) doi:10.1142/S0129065719500254en_US
dc.identifier.issn0129-0657-
dc.identifier.otherEID(2-s2.0-85074994960)-
dc.identifier.urihttps://doi.org/10.1142/S0129065719500254-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5692-
dc.description.abstractThe performance of a brain-computer interface (BCI) will generally improve by increasing the volume of training data on which it is trained. However, a classifier's generalization ability is often negatively affected when highly non-stationary data are collected across both sessions and subjects. The aim of this work is to reduce the long calibration time in BCI systems by proposing a transfer learning model which can be used for evaluating unseen single trials for a subject without the need for training session data. A method is proposed which combines a generalization of the previously proposed subject-specific "multivariate empirical-mode decomposition" preprocessing technique by taking a fixed band of 8-30Hz for all four motor imagery tasks and a novel classification model which exploits the structure of tangent space features drawn from the Riemannian geometry framework, that is shared among the training data of multiple sessions and subjects. Results demonstrate comparable performance improvement across multiple subjects without subject-specific calibration, when compared with other state-of-the-art techniques. © 2019 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.sourceInternational Journal of Neural Systemsen_US
dc.subjectCalibrationen_US
dc.subjectClassification (of information)en_US
dc.subjectCovariance matrixen_US
dc.subjectGeometryen_US
dc.subjectImage classificationen_US
dc.subjectLearning systemsen_US
dc.subjectClassification modelsen_US
dc.subjectGeneralization abilityen_US
dc.subjectMotor imageryen_US
dc.subjectMultivariate empirical mode decomposition (MEMD)en_US
dc.subjectPreprocessing techniquesen_US
dc.subjectRiemannian geometryen_US
dc.subjectState-of-the-art techniquesen_US
dc.subjectTangent spaceen_US
dc.subjectBrain computer interfaceen_US
dc.subjectbiological modelen_US
dc.subjectbrain computer interfaceen_US
dc.subjectelectroencephalographyen_US
dc.subjecthumanen_US
dc.subjectimaginationen_US
dc.subjectmachine learningen_US
dc.subjectBrain-Computer Interfacesen_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectImaginationen_US
dc.subjectMachine Learningen_US
dc.subjectModels, Neurologicalen_US
dc.titleTangent Space Features-Based Transfer Learning Classification Model for Two-Class Motor Imagery Brain-Computer Interfaceen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: