Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6135
Title: | Effect of growth temperature on structural, electrical and optical properties of dual ion beam sputtered ZnO thin films |
Authors: | Mukherjee, Shaibal |
Keywords: | Dual ion beam sputtering;Electrical and optical properties;Near band edge emissions;Optical and electrical properties;Photoluminescence measurements;Preferred orientations;Visible spectral range;X-ray photoelectron spectroscopy studies;Growth temperature;Metallic films;Optical correlation;Optical films;Optical properties;Oxygen;Photoelectrons;Point defects;Substrates;X ray diffraction;X ray diffraction analysis;X ray photoelectron spectroscopy;Zinc oxide;Electric properties |
Issue Date: | 2013 |
Citation: | Pandey, S. K., Pandey, S. K., Mukherjee, C., Mishra, P., Gupta, M., Barman, S. R., . . . Mukherjee, S. (2013). Effect of growth temperature on structural, electrical and optical properties of dual ion beam sputtered ZnO thin films. Journal of Materials Science: Materials in Electronics, 24(7), 2541-2547. doi:10.1007/s10854-013-1130-5 |
Abstract: | ZnO epitaxial thin films were grown on p-type Si(100) substrates by dual ion beam sputtering deposition system. The crystalline quality, surface morphology, optical and electrical properties of as-deposited ZnO thin films at different growth temperatures were studied. Substrate temperature was varied from 100 to 600 C at constant oxygen percentage O2/(O2 + Ar) % of 66.67 % in a mixed gas of Ar and O2 with constant chamber pressure of 2.75 × 10-4 mBar. X-Ray diffraction analyses revealed that all the films had (002) preferred orientation. The minimum value of stress was reported to be -0.32 × 1010 dyne/cm2 from ZnO film grown at 200 C. Photoluminescence measurements demonstrated sharp near-band-edge emission (NBE) was observed at ∼375 nm along with deep level emission (DLE) in the visible spectral range at room temperature. The DLE Peak was found to have decrement as ZnO growth temperature was increased from 200 to 600 C. The minimum FWHM of the NBE peak of 16.76 nm was achieved at 600 C growth temperature. X-Ray photoelectron spectroscopy study revealed presence of oxygen interstitials and vacancies point defects in ZnO film grown at 400 C. The ZnO thin film was found to be highly resistive when grown at 100 C. The ZnO films were found to be n-type conducting with decreasing resistivity on increasing substrate temperature from 200 to 500 C and again increased for film grown at 600 C. Based on these studies a correlation between native point defects, optical and electrical properties has been established. © 2013 Springer Science+Business Media New York. |
URI: | https://doi.org/10.1007/s10854-013-1130-5 https://dspace.iiti.ac.in/handle/123456789/6135 |
ISSN: | 0957-4522 |
Type of Material: | Journal Article |
Appears in Collections: | Department of Electrical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: