Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6711
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhuja, Amandeep Singhen_US
dc.contributor.authorRamteke, Dada Saheben_US
dc.contributor.authorParey, Ananden_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:51:09Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:51:09Z-
dc.date.issued2020-
dc.identifier.citationAhuja, A. S., Ramteke, D. S., & Parey, A. (2020). Vibration-based fault diagnosis of a bevel and spur gearbox using continuous wavelet transform and adaptive neuro-fuzzy inference system doi:10.1007/978-981-15-1532-3_22en_US
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85078177202)-
dc.identifier.urihttps://doi.org/10.1007/978-981-15-1532-3_22-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6711-
dc.description.abstractThis Chapter is based on a research study aimed at identifying faults in two different types of gearboxes under nonstationary conditions. The method proposed for fault diagnosis employs the independent angular resampling technique for processing the raw gearbox vibration signatures along with a hybrid intelligent classifier, namely, ANFIS, for fault diagnosis. With wavelet coefficients being input directly to an intelligent classifier for diagnosing gear faults, promising results have been reported in the recent past. However, considering that the computation burden associated with the implementation of an ANFIS classifier is dependent to a large extent on the network inputs, the angular domain averaged wavelet amplitude maps are segmented, each segment representing 60° of pinion rotation. Coefficients extracted from fragmented scalograms are then fed to a hybrid intelligent classifier, namely, ANFIS, for fault identification. The research outcome indicates reasonably good gear fault diagnostic potential in the case of the bevel gearbox. The methodology proposed is then extended to spur gearbox fault diagnosis with promising results. © Springer Nature Singapore Pte Ltd 2020.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectFailure analysisen_US
dc.subjectFault detectionen_US
dc.subjectFuzzy neural networksen_US
dc.subjectFuzzy systemsen_US
dc.subjectGearsen_US
dc.subjectWavelet transformsen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectANFISen_US
dc.subjectContinuous Wavelet Transformen_US
dc.subjectEntropy ratioen_US
dc.subjectFault identificationsen_US
dc.subjectGear fault diagnosticsen_US
dc.subjectIntelligent classifiersen_US
dc.subjectNon-stationary conditionen_US
dc.subjectFuzzy inferenceen_US
dc.titleVibration-Based Fault Diagnosis of a Bevel and Spur Gearbox Using Continuous Wavelet Transform and Adaptive Neuro-Fuzzy Inference Systemen_US
dc.typeBook Chapteren_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: