Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChouksey, Priyanshaen_US
dc.contributor.authorLad, Bhupesh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:51:15Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:51:15Z-
dc.date.issued2020-
dc.identifier.citationJain, A. K., Chouksey, P., Parlikad, A. K., & Lad, B. K. (2020). Distributed diagnostics, prognostics and maintenance planning: Realizing industry 4.0. Paper presented at the IFAC-PapersOnLine, , 53(3) 354-359. doi:10.1016/j.ifacol.2020.11.057en_US
dc.identifier.issn2405-8963-
dc.identifier.otherEID(2-s2.0-85105565746)-
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2020.11.057-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6751-
dc.description.abstractIn this paper, a novel distributed yet integrated approach for diagnostics and prognostics is presented. An experimental study is conducted to validate the performance. Results showed that distributed prognostics give better performance in leaser computational time. Also, the proposed approach helps in making the results of the machine learning techniques comprehensible and more accurate. These results will be handy in arriving at predictive maintenance schedule considering the criticality of the system, the dependency of the components, available maintenance resources and confidence level in the results of the prognostic. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceIFAC-PapersOnLineen_US
dc.subjectIndustry 4.0en_US
dc.subjectLearning systemsen_US
dc.subjectComputational timeen_US
dc.subjectConfidence levelsen_US
dc.subjectDiagnostics and prognosticsen_US
dc.subjectDistributed diagnosticsen_US
dc.subjectIntegrated approachen_US
dc.subjectMachine learning techniquesen_US
dc.subjectMaintenance planningen_US
dc.subjectMaintenance resourcesen_US
dc.subjectMaintenanceen_US
dc.titleDistributed diagnostics, prognostics and maintenance planning: Realizing industry 4.0en_US
dc.typeConference Paperen_US
dc.rights.licenseAll Open Access, Bronze, Green-
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: