Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Pushpanjay K.en_US
dc.contributor.authorKothari, Rohiten_US
dc.contributor.authorSahu, Santosh Kumaren_US
dc.contributor.authorUpadhyay, Prabhat Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:51:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:51:16Z-
dc.date.issued2020-
dc.identifier.citationSingh, P. K., Kothari, R., Sahu, S. K., Upadhyay, P. K., & Singh, S. (2020). Experimental and numerical investigation of thermal performance of synthetic jet impingement. Paper presented at the International Conference on Nuclear Engineering, Proceedings, ICONE, , 1 doi:10.1115/ICONE2020-16775en_US
dc.identifier.isbn9784888982566-
dc.identifier.otherEID(2-s2.0-85095737835)-
dc.identifier.urihttps://doi.org/10.1115/ICONE2020-16775-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6756-
dc.description.abstractSynthetic jet potentially useful in electronics cooling is investigated both numerically and experimentally. In the present study, a confined three dimensional synthetic jet with sinusoidal moving wall is considered. Computations are carried out using the FLUENT software with the coupled user defined function describing the diaphragm movement. In this study the effect of various geometrical parameters influencing the flow field and heat transfer are investigated. The effects of change in orifice geometry (circular, square and rectangular), orifice aspect ratio, and jet-to-plate distance are studied for a given hydraulic diameter. The heat transfer results obtained from the synthetic jet is compared with the continuous jet. An electromagnetic actuator is used as an oscillating diaphragm for the generation of synthetic jet. A stainless steel foil with 0.05 mm thickness is used as the test specimen. The surface temperature of the test specimen is measured by using a thermal imaging technique during synthetic jet impingement and a constant temperature anemometer has been employed for velocity measurement. Tests are carried out for Reynolds number of 5448, varied range of jet-to-plate distance (1- 18). The maximum value of the heat transfer coefficient is found to be 16 times more than the heat transfer coefficient for natural convection. Copyright © 2020 ASME.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.sourceInternational Conference on Nuclear Engineering, Proceedings, ICONEen_US
dc.subjectActuatorsen_US
dc.subjectAnemometersen_US
dc.subjectAspect ratioen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectElectronic coolingen_US
dc.subjectGeometrical opticsen_US
dc.subjectGeometryen_US
dc.subjectHeat transfer coefficientsen_US
dc.subjectInfrared imagingen_US
dc.subjectJetsen_US
dc.subjectNuclear fuelsen_US
dc.subjectOrificesen_US
dc.subjectReynolds numberen_US
dc.subjectConstant-temperature anemometersen_US
dc.subjectElectromagnetic actuatorsen_US
dc.subjectJet-to-plate distancesen_US
dc.subjectNumerical investigationsen_US
dc.subjectStainless steel foilen_US
dc.subjectSurface temperaturesen_US
dc.subjectThermal Performanceen_US
dc.subjectUser Defined Functionsen_US
dc.subjectNuclear engineeringen_US
dc.titleExperimental and numerical investigation of thermal performance of synthetic jet impingementen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: