Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6838
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohan, Santhakumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:51:29Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:51:29Z-
dc.date.issued2015-
dc.identifier.citationLondhe, P. S., Santhakumar, M., Patre, B. M., & Waghmare, L. M. (2015). Robust nonlinear task space position tracking control of an autonomous underwater vehicle-manipulator system. Paper presented at the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, , 2015-August 1713-1718. doi:10.1109/AIM.2015.7222793en_US
dc.identifier.isbn9781467391078-
dc.identifier.otherEID(2-s2.0-84951209247)-
dc.identifier.urihttps://doi.org/10.1109/AIM.2015.7222793-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6838-
dc.description.abstractThis paper presents a robust nonlinear control scheme for task-space trajectory control for an autonomous underwater vehicle- manipulator system (AUVMS) based on an improved proportional integral derivative (PID) control scheme used for deep-sea intervention tasks. A planar underwater vehicle manipulator system (consists of an underwater vehicle and two link rotary (2R) serial planar manipulator) with dynamic coupling between them is considered for the study and numerical simulation. The actuator and sensor dynamics of the system are also considered. The proposed controller integrates the known approximated inverse dynamic model output as a model-base portion of the controller; uses a feed forward term to enhance the control activity with indulgence from known desired acceleration vector; carries an estimated perturbed term to compensate for the unknown effects namely external disturbances and un-modelled dynamics and a decoupled nonlinear PID controller as a feedback portion to enhance closed-loop stability and account for the estimation error of uncertainties. The primary objective of the proposed control scheme is to track the given end-effector task-space trajectory despite of external disturbances, system uncertainties and internal noises associated with the AUVMS system, which show the robustness of the proposed control scheme. Simulation results confirmed that the AUVMS can successfully track the given desired spatial trajectory. © 2015 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIMen_US
dc.subjectAutonomous underwater vehiclesen_US
dc.subjectIntelligent mechatronicsen_US
dc.subjectManipulatorsen_US
dc.subjectNonlinear feedbacken_US
dc.subjectProportional control systemsen_US
dc.subjectSpace flighten_US
dc.subjectThree term control systemsen_US
dc.subjectTracking (position)en_US
dc.subjectTrajectoriesen_US
dc.subjectTwo term control systemsen_US
dc.subjectUncertainty analysisen_US
dc.subjectUnderwater equipmenten_US
dc.subjectVehiclesen_US
dc.subjectAcceleration vectorsen_US
dc.subjectClosed loop stabilityen_US
dc.subjectExternal disturbancesen_US
dc.subjectInverse dynamic modelen_US
dc.subjectNonlinear PID controllersen_US
dc.subjectProportional integral derivative controlen_US
dc.subjectRobust non-linear controlsen_US
dc.subjectUnderwater vehicle manipulator systemsen_US
dc.subjectControllersen_US
dc.titleRobust nonlinear task space position tracking control of an autonomous underwater vehicle-manipulator systemen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: