Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6846
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLad, Bhupesh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:51:30Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:51:30Z-
dc.date.issued2015-
dc.identifier.citationJain, A. K., & Lad, B. K. (2015). Predicting remaining useful life of high speed milling cutters based on artificial neural network. Paper presented at the Proceedings of 2015 International Conference on Robotics, Automation, Control and Embedded Systems, RACE 2015, doi:10.1109/RACE.2015.7097283en_US
dc.identifier.isbn9788192597430-
dc.identifier.otherEID(2-s2.0-84934777232)-
dc.identifier.urihttps://doi.org/10.1109/RACE.2015.7097283-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6846-
dc.description.abstractPrecise Remaining Useful Life (RUL) prediction of cutting tools is crucial for reliable operation and to reduce the maintenance cost. This paper proposes Artificial Neural Network (ANN) based approach for accurate RUL prediction of high speed milling cutters. Developed ANN model uses time and statistical features, selected through stepwise regression feature subset selection technique, as input. By doing this, the strong correlation model is achieved and the performance of cutting tool prognosis is enhanced. An examination is carried out in this work on functioning of distinctive models established with same data. Developed ANN model demonstrates improved performance over conventional Multi-Regression Model (MRM) and Radial Basis Functional Network (RBFN). © 2015 Hindustan University.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of 2015 International Conference on Robotics, Automation, Control and Embedded Systems, RACE 2015en_US
dc.subjectAgricultural robotsen_US
dc.subjectCondition monitoringen_US
dc.subjectCutting toolsen_US
dc.subjectEmbedded systemsen_US
dc.subjectForecastingen_US
dc.subjectMilling cuttersen_US
dc.subjectNeural networksen_US
dc.subjectRadial basis function networksen_US
dc.subjectRegression analysisen_US
dc.subjectFeature subset selectionen_US
dc.subjectHigh speed milling cutteren_US
dc.subjectMulti-regression modelen_US
dc.subjectRemaining useful life predictionsen_US
dc.subjectRemaining useful livesen_US
dc.subjectStatistical featuresen_US
dc.subjectStepwise regressionen_US
dc.subjectTool condition monitoringen_US
dc.subjectMilling (machining)en_US
dc.titlePredicting Remaining Useful Life of high speed milling cutters based on Artificial Neural Networken_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: