Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Neelesh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:51:36Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:51:36Z-
dc.date.issued2012-
dc.identifier.citationShandilya, P., Jain, P. K., & Jain, N. K. (2012). Neural network based modeling in wire electric discharge machining of SiC p/6061 aluminum metal matrix composite doi:10.4028/www.scientific.net/AMR.383-390.6679en_US
dc.identifier.isbn9783037852958-
dc.identifier.issn1022-6680-
dc.identifier.otherEID(2-s2.0-83755163865)-
dc.identifier.urihttps://doi.org/10.4028/www.scientific.net/AMR.383-390.6679-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6878-
dc.description.abstractWire electric discharge machining (WEDM) process is considered to be one of the most suitable processes for machining metal matrix composite (MMC) materials. Lot of research work has been done on WEDM process, but very few investigations have been done on WEDM of MMCs. The purpose of this research work is to develop the artificial neural network (ANN) model to predict the material removal rate (MRR) during WEDM of SiC p/6061 Al MMC. In this work four input parameters namely servo voltage, pulse-on time, pulse-off time and wire feed rate were used to develop the ANN model. The output parameter of the model was MRR. A Box-Behnken design (BBD) approach of response surface methodology (RSM) was used to generate the input output database required for the development of ANN model. Training of the neural network models were performed on 29 experimental data points. The predicted values obtained from ANN model show that model can predict MRR with reasonable accuracy. The good agreement is obtained between the ANN predicted values and experimental values. In the present case, the value of correlation coefficient (R) equal to 0.9968, is closer to unity for ANN model of MRR. This clearly indicates that prediction accuracy is higher for ANN model.en_US
dc.language.isoenen_US
dc.sourceAdvanced Materials Researchen_US
dc.subjectAluminum metal matrix compositesen_US
dc.subjectArtificial Neural Networken_US
dc.subjectArtificial neural network modelsen_US
dc.subjectBox-Behnken designen_US
dc.subjectCorrelation coefficienten_US
dc.subjectExperimental dataen_US
dc.subjectExperimental valuesen_US
dc.subjectInput parameteren_US
dc.subjectInput-outputen_US
dc.subjectMaterial removal rateen_US
dc.subjectMaterial removal rate (MRR)en_US
dc.subjectMetal matrix composite (MMC)en_US
dc.subjectMetal matrix compositesen_US
dc.subjectNetwork-based modelingen_US
dc.subjectNeural network modelen_US
dc.subjectOutput parametersen_US
dc.subjectPrediction accuracyen_US
dc.subjectReasonable accuracyen_US
dc.subjectResponse Surface Methodologyen_US
dc.subjectServo voltageen_US
dc.subjectWire electric discharge machiningen_US
dc.subjectWire feed rateen_US
dc.subjectElectric discharge machiningen_US
dc.subjectElectric dischargesen_US
dc.subjectForecastingen_US
dc.subjectManufactureen_US
dc.subjectNeural networksen_US
dc.subjectSilicon carbideen_US
dc.subjectSurface dischargesen_US
dc.subjectTechnologyen_US
dc.subjectWireen_US
dc.subjectMetallic matrix compositesen_US
dc.titleNeural network based modeling in wire electric discharge machining of SiC p/6061 aluminum metal matrix compositeen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: