Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKankar, Pavan Kumaren_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:52:06Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:52:06Z-
dc.date.issued2020-
dc.identifier.citationSinghal, A., Shukla, R., Kankar, P. K., Dubey, S., Singh, S., & Pachori, R. B. (2020). Comparing the capabilities of transfer learning models to detect skin lesion in humans. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 234(10), 1083-1093. doi:10.1177/0954411920939829en_US
dc.identifier.issn0954-4119-
dc.identifier.otherEID(2-s2.0-85087660405)-
dc.identifier.urihttps://doi.org/10.1177/0954411920939829-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7016-
dc.description.abstractEffective diagnosis of skin tumours mainly relies on the analysis of the characteristics of the lesion. Automatic detection of malignant skin lesion has become a mandatory task to reduce the risk of human deaths and increase their survival. This article proposes a study of skin lesion classification using transfer learning approach. The transfer learning model uses four different state-of-the-art architectures, namely Inception v3, Residual Networks (ResNet 50), Dense Convolutional Networks (DenseNet 201) and Inception Residual Networks (Inception ResNet v2). These models are trained under the dataset comprising seven different classes of skin lesions. The skin lesion images are pre-processed using image quantization, grayscaling and the Wiener filter before final training step. These models are compared for performance evaluation on different metrics. The present study shows the efficacy of the methodology for automated classification of lesion images. © IMechE 2020.en_US
dc.language.isoenen_US
dc.publisherSAGE Publications Ltden_US
dc.sourceProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicineen_US
dc.subjectDermatologyen_US
dc.subjectDiagnosisen_US
dc.subjectImage compressionen_US
dc.subjectLearning systemsen_US
dc.subjectAutomated classificationen_US
dc.subjectAutomatic Detectionen_US
dc.subjectConvolutional networksen_US
dc.subjectDifferent classen_US
dc.subjectImage quantizationen_US
dc.subjectLearning modelsen_US
dc.subjectSkin lesion imagesen_US
dc.subjectState of the arten_US
dc.subjectTransfer learningen_US
dc.subjecthumanen_US
dc.subjectmachine learningen_US
dc.subjectskinen_US
dc.subjectskin tumoren_US
dc.subjectHumansen_US
dc.subjectMachine Learningen_US
dc.subjectNeural Networks, Computeren_US
dc.subjectSkinen_US
dc.subjectSkin Neoplasmsen_US
dc.titleComparing the capabilities of transfer learning models to detect skin lesion in humansen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: