Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7055
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, A.en_US
dc.contributor.authorPydi, Yeswanth S.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:52:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:52:16Z-
dc.date.issued2020-
dc.identifier.citationDaggumati, S., Sharma, A., & Pydi, Y. S. (2020). Micromechanical FE analysis of SiCf/SiC composite with BN interface. Silicon, 12(2), 245-261. doi:10.1007/s12633-019-00119-3en_US
dc.identifier.issn1876-990X-
dc.identifier.otherEID(2-s2.0-85062616520)-
dc.identifier.urihttps://doi.org/10.1007/s12633-019-00119-3-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7055-
dc.description.abstractThe current study presents a micromechanical Finite Element Analysis (FEA) methodology to predict the room temperature transverse tensile failure behavior of a SiCf/SiC composite (Silicon Carbide Fiber/Silicon Carbide Matrix) with Boron Nitride (BN) fiber coating. In order to accurately capture the constituent level damage initiation and propagation, three-dimensional Representative Volume Element (RVE) models are generated by discreetly modeling the fiber, the matrix, and the coating material. In addition, various geometrical parameters such as the random distribution of the fibers, the fiber-coating, and the matrix-coating interface decohesions were taken into account. For modeling the fiber-coating and the matrix-coating interface interactions, cohesive surface approach within the cohesive zone module of Abaqus® was used. In order to capture the coating and the matrix material fracture behavior, the eXtended Finite Element Method (XFEM) approach was employed. Using the proposed numerical methodology, detailed local stress-strain and damage analysis lead to an observation that the chosen interface interactions have a predominant effect on the RVE damage behavior. Moreover, local fiber placement and the RVE size have a significant influence on the damage initiation threshold and hence the predicted strength and failure strain of the RVE. © 2019, Springer Nature B.V.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceSiliconen_US
dc.subjectBoron carbideen_US
dc.subjectBoron nitrideen_US
dc.subjectCeramic matrix compositesen_US
dc.subjectCoatingsen_US
dc.subjectCrack propagationen_US
dc.subjectFibersen_US
dc.subjectGeometryen_US
dc.subjectIII-V semiconductorsen_US
dc.subjectInterfaces (materials)en_US
dc.subjectNitridesen_US
dc.subjectSilicon carbideen_US
dc.subjectExtended finite element methoden_US
dc.subjectInterface interactionen_US
dc.subjectMicromechanical FE analysisen_US
dc.subjectMicromechanical finite element analysisen_US
dc.subjectNumerical methodologiesen_US
dc.subjectRandom distributionen_US
dc.subjectRepresentative volume element (RVE)en_US
dc.subjectSilicon carbide fiberen_US
dc.subjectFinite element methoden_US
dc.titleMicromechanical FE Analysis of SiCf/SiC Composite with BN Interfaceen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: