Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/7073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamteke, Dada Saheben_US
dc.contributor.authorParey, Ananden_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:52:20Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:52:20Z-
dc.date.issued2019-
dc.identifier.citationRamteke, D. S., Parey, A., & Pachori, R. B. (2019). Automated gear fault detection of micron level wear in bevel gears using variational mode decomposition. Journal of Mechanical Science and Technology, 33(12), 5769-5777. doi:10.1007/s12206-019-1123-2en_US
dc.identifier.issn1738-494X-
dc.identifier.otherEID(2-s2.0-85077180468)-
dc.identifier.urihttps://doi.org/10.1007/s12206-019-1123-2-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/7073-
dc.description.abstractGearboxes have an important role in power transmission systems. For such systems, vibration-based fault diagnosis techniques are frequently used to prevent premature failure and to ensure smooth transmission. We automated the fault diagnosis of gears having level of wear fault at micron using variational mode decomposition (VMD). VMD has been applied iteratively with specific input parameters. VMD decomposes the gear vibration signal into different narrowband components (NBCs) or obtained components (OCs). Various statistical features, namely kurtosis, skewness, standard deviation, root mean square, and crest factor, were extracted from the different OCs. Kruskal-Wallis test based on probability values was used to identify the significant features. For the automation of fault detection system, a comparative study was done using the random forest, multilayer perceptron, and J48 classifiers. The proposed method exhibits 96.5 % accuracy using random forest classifier with combined kurtosis, skewness, and standard deviation features. © 2019, KSME & Springer.en_US
dc.language.isoenen_US
dc.publisherKorean Society of Mechanical Engineersen_US
dc.sourceJournal of Mechanical Science and Technologyen_US
dc.subjectAutomationen_US
dc.subjectBevel gearsen_US
dc.subjectClassifiersen_US
dc.subjectDecision treesen_US
dc.subjectElectric power transmissionen_US
dc.subjectFailure analysisen_US
dc.subjectFeature extractionen_US
dc.subjectHigher order statisticsen_US
dc.subjectIterative methodsen_US
dc.subjectStatisticsen_US
dc.subjectVibrations (mechanical)en_US
dc.subjectWear of materialsen_US
dc.subjectFault detection systemsen_US
dc.subjectFault diagnosis techniqueen_US
dc.subjectGear fault detectionen_US
dc.subjectKruskal-Wallis testsen_US
dc.subjectMode decompositionen_US
dc.subjectPower transmission systemsen_US
dc.subjectRandom forest classifieren_US
dc.subjectStatistical featuresen_US
dc.subjectFault detectionen_US
dc.titleAutomated gear fault detection of micron level wear in bevel gears using variational mode decompositionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mechanical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: